Constraining Properties of Evolving Cold Interstellar Clouds

1. Interstellar Medium

- Area between stars containing mix of gas and dust (small solid particles)
- Small percentage of galactic mass, but critical role in galaxy's development
- Composition: 90.8% Hydrogen atoms, 9.1% Helium, 0.12% heavier elements; we focus on Hydrogen here.
- Different gas temperatures $(10 10^6 \text{ K})$ in different "phases" (H₂, HI, HII)
- Gas and dust form new stars, which later return material to their environment.
- Cold interstellar clouds are denser regions that can form stars. Velocity: -40.21 km/s
- We want to understand their structure and dynamics.

Fig. 1. Onion-skin model of cloud

2. HI Self-Absorption (HISA)

- HI 21 cm line emission arises from warm gas behind cold cloud.
- This is absorbed by the cold cloud when passing through it.
- The absorption shows up as a narrow "dip" in the emission line.

Fig. 3. HI and CO spectra near map center in Fig 2, with HISA at -40 km/s

Fig. 4. Line of sight through HISA cloud

3. Properties

- f_n fraction of hydrogen particles that are neutral atoms, not molecules
- X_{CO} molecular gas scaling factor The amount of H₂ traced by CO is equal to X_{CO} multiplied by the ¹²CO 2.6 mm emission line brightness, integrated over its velocity range:
- $N_{H_2,CO} = X_{CO} \int T_{B^{12}CO}(v) dv$
- H₂ cannot be mapped directly, since it doesn't emit when cold.
- H₂ not traced by CO is called *dark molecular gas*.
- X_{EBV} gas-to-dust scaling factor The total hydrogen column density (hydrogen atoms per cm² along the line of sight) traced by dust is equal to X_{EBV} multiplied by E_{B-V} , the reddening of starlight due to dust: • $N_{H,dust} = X_{EBV}E_{B-V} = 2N_{H2} + N_{HI} + N_{HII}$

Kelly Humphrey¹, Steven Gibson¹, Alberto Noriega-Crespo² ¹ Western Kentucky University, ² Space Telescope Science Institute

4. Model

- For simplicity, assume cloud has nested rectangular structure in **Fig. 1**.
- Numerically modeled radiative transfer through cells with different properties, including temperature, density
- Used ideal gas law to keep temperature and density consistent with pressure equilibrium
- Made synthetic observations of 21cm line absorption and emission to test analysis

Fig. 7. Calculated atomic fraction (f_n) for Perseus HISA Complex

Fig. 8. Calculated molecular scaling factor (X_{CO}) for Perseus HISA Complex

5. Perseus HISA Complex Analysis

• Analyzed Perseus HISA Cloud Complex to help constrain parameter values

• Chose well-studied area to test analysis

• Used HI data from CGPS, CO data from OGS, dust images from *Planck* satellite

• Used ideal gas relations

• Mapped possible f_n , X_{CO} values from different X_{EBV} input values to find range of likely values for parameters.

6. Results

• Assuming standard value of gas-to-dust scaling factor $X_{EBV} = 5.8 * 10^{21} \text{ cm}^{-2} \text{ mag}^{-1}$, we obtain

•
$$f_n = 0.037$$

- $X_{CO} = 2.9 * 10^{20} \text{ cm}^{-2} / (\text{K km/s})$
- From these results, we find that
 - Fraction of H_2 traced by CO = 0.68
 - HISA gas temperature = 32.2 K

7. Conclusions and Future Work

- Scaling factors reasonably consistent with literature values.
- The Perseus HISA Complex is cold and mostly molecular.
- It contains a significant amount of dark gas.
- Properties consistent with evolving clouds prior to star formation
- Plan to use higher angular resolution data (1-2 arcminutes vs 5-6).
- Also plan to analyze other cold clouds throughout the galaxy.

8. References

- Beauchamp & Gibson 2023, WKU-SSS
- Gibson et al. 2018, JAXA-SP-17-009E, 397
- Gibson et al. 2000, ApJ, 540, 851
- Heyer et al. 1998, ApJS, 115, 241
- Planck Collab. 2016, A&A, 586, A132
- Taylor et al. 2003, AJ, 125, 3145

9. Acknowledgements

- This work was funded by NASA KY EPSCoR RID award 3200004560-23-206.
- Data sources:

 - CO: Outer Galaxy Survey (FCRAO)
 - Dust: *Planck Space Telescope* (ESA)

Fig. 6. Perseus HISA Complex dust content

Fig. 5. Perseus HISA Complex CO line integral

• HI: Canadian Galactic Plane Survey (DRAO)