A Hands-On Radio Telescope for WKU

Phillip Wilkerson\(^1\), Steven J. Gibson\(^1\), Henry Cantrell\(^2\), Jason Boyle\(^2\), Stacy Hicks\(^2\), Douglas Harper\(^2\), Trason Carter\(^2\), Rebecca Brown\(^2\), Joshua Stewart\(^2\), Benjamin Thornberry\(^3\), and James Pierce\(^4\)

\(^1\)Western Kentucky University, \(^2\)M. Gatton Academy, \(^3\)Kentucky Colonels Amateur Radio Club

Summary

In the summer of 2016, the WKU Physics and Astronomy Department acquired a vintage television receive-only (TVRO) C-band 4 GHz satellite system, including a 10-foot parabolic dish, mounting hardware, and electronics, from neighbors of graduate student S. Hicks. The dish and hardware were moved to WKU’s Bell Observatory, and the electronics were taken to the university for testing. By using the existing hardware and new consumer television amplifier/downconverter systems, the Department is developing an effective instrument for research training and education at a greatly reduced cost compared to purchasing a new system. When the project is complete, the observatory will be equipped with a radio telescope capable of observing thermal emission from nearby celestial objects, such as the Sun, Moon, and Jupiter, as well as more distant sources of radio emission in the microwave bands. It can then be used for astronomy education and public outreach through experiments such as observing the August 2017 total solar eclipse in radio waves.

Progress and Future Steps

- The dish and hardware were moved to the Observatory over the summer by several students and faculty. Rusted bolts were freed and bent brackets were straightened in the fall; when weather became warm enough in the spring, damage to the fiberglass dish was repaired.

- As the original set-top box (used to control the dish from indoors) was not found, we used a bias tee diplexer to provide power to the receiver electronics through the coaxial signal cable. Although the low noise amplifier worked fine, the frequency downconverter was inoperative. Experiments continued with a smaller 6 ft dish with H. Cantrell’s test equipment; using a software-defined radio (SDR) receiver module and spectral display software, the radio signature of the Sun was detected.

- Modern television electronics, including new C-band and Ku-band feed horns, have been purchased to replace the original systems. In addition, small SDRs, Raspberry Pi single-board computers, motor interface boards, and related components have been ordered for controlling the dish’s pointing and sampling the received signal.

- D. Harper’s PHYS 318 class is working on a LabVIEW software interface to perform computational and visualization tasks with the raw data from the SDR module output, such as converting the wideband received signal into a manageable data stream and converting the system response into brightness traces on the sky. The interface will also allow students and faculty to operate the telescope remotely over the internet.

- The final installation of the dish will require digging a post hole and cable trenches at the observatory, then leveling and setting the post in the ground with concrete mix and burying the power and data cables.

References


Acknowledgements

We are grateful for the donation of the satellite dish and related equipment by the family of Joseph Bates of Monticello, Kentucky, and for the assistance and advice of Mark Barnes, Michael Cantrell, Eddy Hicks, Claresa Box, and John Gibson. Funding support was provided by Research and Creative Activities Program grant 17-8030 from WKU Sponsored Programs and by a Research Supplements Grant from the Carol Martin Sutton Academy for Mathematics and Science in Kentucky.

For more information, please see physics.wku.edu/~gibson