Mapping Dark Atomic and Molecular Gas in the Galaxy

S. J. Gibson¹, A. C. Bell^{1,2}, J. H. Newton^{1,3}, W. S. Howard⁴, C. S. Jolly^{1,5}, M. E. Spraggs^{1,5}, J. M. Hughes^{1,5}, C. M. Brunt⁶, A. R. Taylor⁷,

A. Noriega-Crespo⁸, W. T. Reach⁸, S. Carey⁸, B-C. Koo⁹, G. Park⁹, T. Dame¹⁰, IGPS Consortium, I-GALFA Consortium ¹Western Kentucky U., ²U. Tokyo, ³McMaster U., ⁴Union U., ⁵C. M. Gatton Acad., ⁶Exeter U., ⁷U. Calgary, ⁸IPAC, ⁹Seoul Nat. U., ¹⁰Harvard-CfA

limit but above that for dark H2 (Snow & McCall 2006). $T_B(H~{\rm I})=20$ K. $N_{\rm HI}(t<1)\sim8x10^{19}~{\rm cm}^2,$ while multiplying the ON-OFF 100µm intensity by $1x10^{20}~{\rm cm}^2$ / MJy/sr (Reach et al. 1-0 emission (lower right; Dame, private comm.); the contour is $T_B(H)= 20 \text{ K}$. $N_{HI}(\tau << 1) \sim 8 \times 10^{19} \text{ cm}^2$, while multiplying the 1994) yields N_H(dust) ~ 5x10²⁰ cm⁻², near the ¹²CO self-shielding Figure 3. Prominent dark-gas filament in Arecibo narrow-line H I

U.S. funding support provided by NSF, NASA, WKU, and the Gatton Academy.

