Some Basic Statistical Measures

- Individual Measurement:

The variable x_{i} is used to represent the $i^{\text {th }}$ measurement in a series of N measurements of the quantity x, where $i=1,2, \ldots, N$.

- Mean:

$$
\begin{equation*}
\bar{x}=\langle x\rangle=\frac{1}{N}\left(x_{1}+x_{2}+\cdots+x_{N}\right)=\frac{1}{N} \sum_{i=1}^{N} x_{i} \tag{1}
\end{equation*}
$$

This is usually used to represent the "average" measurement value. Two other possibilities are the median and the mode, which have different definitions.

- Individual Deviation from the Mean:

The deviation of one measurement is $\delta_{x_{i}}=x_{i}-\langle x\rangle$. This quantity can be positive or negative.

- Sample Variance $=$ Mean Square Deviation:

$$
\begin{equation*}
\sigma_{x}{ }^{2}=\frac{1}{N-1} \sum_{i=1}^{N}{\delta_{x_{i}}}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\langle x\rangle\right)^{2}=\left(\frac{N}{N-1}\right)\left[\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right] \tag{2}
\end{equation*}
$$

This has 1 degree of freedom less than $\langle x\rangle$, hence the $N-1$ factor. The last identity allows for single-pass computation and is related to the parallel axis theorem of mechanics.

- Standard Deviation $=$ Root Mean Square (RMS) Deviation:

$$
\begin{equation*}
\sigma_{x}=\sqrt{\sigma_{x}^{2}}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\langle x\rangle\right)^{2}}=\sqrt{\left(\frac{N}{N-1}\right)\left[\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right]} \tag{3}
\end{equation*}
$$

This is the amount of "scatter" in a set of measurements, or the amount of "noise" associated with a single measurement. It does not change as the number of measurements is increased.

- Standard Deviation of the Mean (SDM):

$$
\begin{equation*}
\sigma_{\langle x\rangle}=\frac{\sigma_{x}}{\sqrt{N}}=\sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N}\left(x_{i}-\langle x\rangle\right)^{2}}=\sqrt{\left(\frac{1}{N-1}\right)\left[\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right]} \tag{4}
\end{equation*}
$$

Also known as the error in the mean or standard error, this represents the uncertainty ("precision") of the average value of a set of measurements. For purely random errors, it decreases as the number of measurements increases, leading to a more certain result. Measured results are commonly reported in the form $\langle x\rangle \pm \sigma_{\langle x\rangle}$.

- Signal-to-Noise Ratio ($\mathrm{S} / \mathrm{N}=\mathrm{SNR}$):

$$
\begin{equation*}
S / N=\langle x\rangle / \sigma_{\langle x\rangle} \tag{5}
\end{equation*}
$$

This characterizes the significance of a result. $S / N \geq 3$ is a minimum threshhold of reliability, with $S / N \geq 5$ preferrred. In Gaussian statistics, $S / N=3$ equates to a 99.7% confidence level, i.e., the real quantity x has a 99.7% probability of lying between $\langle x\rangle-3 \sigma_{\langle x\rangle}$ and $\langle x\rangle+3 \sigma_{\langle x\rangle}$, while $S / N=5$ equates to 99.99994% confidence. For a single measurement, $S / N=x_{i} / \sigma_{x}$.

