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Abstract. The Canadian Galactic Plane Survey has opened new vistas on the Milky
Way, including cold hydrogen clouds that bridge a critical gap between the classical
diffuse interstellar medium and the gravitationally bound molecular clouds that can
form stars. The CGPS and its fellow IGPS surveys revealed these transitional clouds to
be surprisingly widespread as H self-absorption (HISA) shadows against the Galactic
H  emission background. The richness of the IGPS data allows detailed examination of
HISA cloud spatial structure, gas properties, Galactic distribution, and correspondence
with molecular gas, all of which can constrain models of coldH  clouds in the evolving
interstellar medium. Augmenting the landmark IGPS effort are new and upcoming
surveys with the Arecibo 305m and Australian SKA Pathfinder telescopes.

1. Observational Context

This review is of limited scope in order to leave room for a fewcurrent results. Readers
are encouraged to consult an earlier review (Gibson 2002), as well as excellent broader
H  reviews by Kulkarni & Heiles (1988), Dickey & Lockman (1990), and Kalberla &
Kerp (2009), still-broader ISM reviews by Wolfire et al. (1995, 2003), Cox (2005), and
Snow & McCall (2006), and many other articles in these proceedings.

Neutral atomic hydrogen (H), the dominant constituent of interstellar matter in
the Galactic disk, is found in a broad range of environments,from diffuse gas with
T ∼ 103−104 K (the warm neutral medium=WNM) to cold clouds withT ∼ 10−102 K
(the cold neutral medium= CNM). Consequently, the H 21cm line is used to study the
structure, properties, and distribution of gas in both the ambient ISM and denser, quies-
cent pockets where H2 forms, the first step toward star formation. CNM observations,
the subject of this review, allow close scrutiny of (1) the atomic-to-molecular phase
transition, (2) intricate cloud structure shaped by shocks, turbulence, and perhaps mag-
netic fields, and (3) spiral density waves that affect H radiative transfer. The Canadian,
VLA, and Southern Galactic Plane Surveys (CGPS: Taylor et al. 2003; VGPS: Stil et al.
2006; SGPS: McClure-Griffiths et al. 2005; together, “the IGPS”) have transformed our
view of the CNM on all of these fronts, opening the way for future work with the next
generation of H surveys.

A simple demonstration that both WNM and CNM temperature regimes exist is to
compare H absorption toward a compact continuum source with H emission adjacent
to the source. Early interferometric studies of this sort (Clark 1965; Radhakrishnan
et al. 1972) showed that narrow-line emission features havematching narrow-line ab-
sorption, but broad-line emission lacks obvious absorption counterparts, except at a
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Figure 1. CGPS narrow-line H emission (NHIE) feature in the outer Galaxy
(d ∼> 6 kpc), with ON-OFF brightness∆Tb = 38 K, line width∆v = 2.8 km/s, and
angular width∆θ = 2′ ∼> 3 pc. Gas properties ofTs ∼ 80− 120 K, τ ∼ 0.5− 1.0,
NHI ∼ 3− 5× 1020 cm−2, andMHI ∼> 25 M⊙ are consistent with measurements. No
corresponding CO or FIR emission is apparent.

very weak level (e.g., Dwarakanath et al. 2002.) Two complementary physical argu-
ments apply. One is that “warm” means ”poorly absorbing”: the line center optical
depth varies inversely with temperature asτ0 = C N/ (Ts∆v), whereN is column den-
sity, Ts is “spin” (excitation) temperature,∆v is the line full width at half maximum
(FWHM), andC = 5.2 × 10−19cm2 K km/s for Gaussian lines (Dickey & Lockman
1990). The other argument is that “cold” means “narrow line”, or less thermal broaden-
ing: ∆vtherm= 0.215

√
Tk km/s for H , whereTk is the gas kinetic temperature (Spitzer

1978). GenerallyTs ≃ Tk in the CNM, butTs < Tk may occur in the WNM under some
conditions (Liszt 2001). Although turbulence can broaden CNM lines significantly, it is
rarely enough to confuse them with WNM lines, which form an observationally distinct
population (Heiles & Troland 2003).

Whether an H cloud is seen in emission or absorption depends on the sight line
geometry. For illustration, consider the simple two-component H  radiative transfer
equation (derived in Dickey 2002). Its observed brightnesstemperature is

TB (v) = Ts

[

1− e−τ(v)
]

+ Tbg(v) e−τ(v) , (1)

wherev is radial velocity,Ts and τ(v) apply to the foreground cloud, andTbg(v) is
the background brightness temperature. The cloud producesnet emission if it is warm
relative to the background brightness (Ts > Tbg) and absorption if cold (Ts < Tbg).
The same cloud can also change from emission to absorption against a varying back-
ground. Sinceτ ∝ Ts

−1, WNM and CNM emission features can have similar brightness
despite radically differentTs, so these phases are best distinguished by emission line
width. Sufficiently narrow-line H emission (NHIE) traces CNM unambiguously. For
example,∆v ∼< 4 km/s⇒ Tk ∼< 300 K, with the actualTk probably well below this if
turbulence is present. Historically only a few NHIE features were known (Knapp &
Verschuur 1972; Goerigk et al. 1983), but increasingly sophisticated spectral decom-
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positions have revealed more (Verschuur & Schmelz 1989; Poppel et al. 1994; Haud
2010). In the CGPS, NHIE features can be found rather easily by eye (Fig. 1).

Cold H  is more commonly identified in absorption against either a continuum
source (H continuum absorption= HICA) or other line emission (H self-absorption
= HISA). These two approaches are highly complementary. HICAis the method of
choice for exploring CNM properties (e.g., Dickey et al. 2003; Heiles & Troland 2003),
because it has fewer radiative transfer unknowns. One can move off the H  frequency
to getTbg exactly, where HISA (and NHIE) line backgrounds must be estimated. One
can also move off the continuum position to see the cloud in emission, a HISA rarity
(Kerton 2005). But HICA sight lines are discrete and well separated in present surveys
(0.6 per deg2 in the CGPS; Strasser & Taylor 2004), so individual clouds are often
sampled only once, or missed entirely. On larger scales though, HICA sampling in
the IGPS is sufficient to see Galactic structure: Strasser et al. (2007) givea beautiful
longitude-velocity HICA map of spiral arms in CNM, while Dickey et al. (2009) find a
surprisingly steady mix of CNM and WNM in the outer disk, where equilibrium models
predict less CNM or even none due to a drop in pressure (Wolfireet al. 2003).

HISA is the preferred method for mapping detailed CNM structure in absorp-
tion (Fig. 2). Although not ubiquitous, bright H emission is smooth and extensive
enough to allow HISA shadows of CNM clouds to be imaged over large areas (Riegel
& Crutcher 1972; Knapp 1974a; Wendker et al. 1983). Most bright H  is near the
Galactic plane, but this is also where the bulk of the CNM is located (Cox 2005). HISA
backgrounds are typically not as bright as HICA backgrounds, so the CNM sampled
by HISA has a lower maximumTs than HICA and is more focused on the coldest H
where H2 formation is taking place. In fact, very narrow-line HISA inH2 clouds can
probe the cloud chemistry and evolutionary state (Li & Goldsmith 2003; Goldsmith &
Li 2005; Goldsmith et al. 2007). Lastly, since the HISA line emission background must
overlap in velocity with the absorbing cloud, HISA radiative transfer samples both the
temperature and velocity fields along the line of sight, aiding Galactic structure inves-
tigations. The rest of this review discusses HISA results primarily.

Figure 2. Striking anticenter H self-absorption (HISA) features in new CGPS-III
data, with typical line widths∆v ∼ 2−3km/s. Neither has been identified previously,
except tentatively in the DRAO 26m H survey (Higgs et al. 2005). Comparison to
new FCRAO CO data is planned (see Brunt and Mottram articles,this volume).
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2. HISA in the CGPS Era

Before the CGPS, HISA was mostly used to examine H content in molecular clouds,
either in single-beam observations toward lists of objects(e.g., Knapp 1974b; Mc-
Cutcheon et al. 1978) or in synthesis imaging of small areas (e.g., Landecker et al.
1980; van der Werf et al. 1989). The common presumption was that HISA gas is too
cold to exist without some form of molecular cooling and shielding from the interstel-
lar radiation field. So time-consuming HISA searches outside known dark/CO clouds
were not pursued, except in position-velocity strip surveys with Arecibo (Baker & Bur-
ton 1979; Bania & Lockman 1984) and in lower-resolution mapsof chance discoveries
(e.g., Riegel & Crutcher 1972; Hasegawa et al. 1983). Many studies used the Maryland-
Green Bank 91m H survey (Westerhout & Wendlandt 1982), whose angular resolution
was sufficient to study basic aspects of large HISA features (e.g., Fig. 3). The need for
a synthesis imaging survey to detect and study HISA at smaller scales was not widely
appreciated. However, such an undertaking was also impractical before the computing
power and automated techniques of the 1990s (Higgs 1999).

The CGPS was not designed as a HISA search engine, but its highangular resolu-
tion and unbiased coverage of a large area proved ideal for this purpose. New, intricate
HISA clouds were found, including many without corresponding CO emission (Fig. 3;
see also Gibson et al. 2000; Knee & Brunt 2001; Kerton 2005). Similar discoveries in
the SGPS and VGPS came rapidly (McClure-Griffiths et al. 2001; Kavars et al. 2003;
Gibson et al. 2004; McClure-Griffiths et al. 2006). All were greatly aided by the in-
clusion of single-dish data with the synthesis observations for full uv coverage. In the
CGPS, comparison data in the12CO J = 1− 0 line (Heyer et al. 1998) and far-infrared
IRAS dust emission (Cao et al. 1997; Kerton & Martin 2000) were also a significant
advantage. The now-common view that large, blind, high-resolution, multiwavelength
surveys are worthwhile is due in no small part to the pioneering CGPS effort.

Figure 3. CGPS Perseus-arm HISA∼ 1◦ S of W4. Left: H  image with12CO
(0.6 K) and FIR 100µm (63 MJy/sr) contours. The cross marks the position of the
H  and CO spectra at right. HISA extends well beyond the detected CO but has
matching dust emission, suggesting H2 untraced by CO. This HISA-CO discrepancy
is large enough to be visible at∼ 10′ resolution (Hasegawa et al. 1983).
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Figure 4. IGPS HISA longitude-velocity distribution over most of the Galactic
disk, integrated in latitude as

∫

(TON − TOFF) db (strong absorption is dark). Survey
areas are marked. CGPS-III data are not yet included. “GALFA” = Arecibo anticen-
ter coverage. Contours show H emission withTB = 70 K, the minimum for HISA
to be detected reliably by the search algorithm. Inner-Galaxy gas hasvLS R∼> 0 km/s
for 0◦ < ℓ < 180◦ andvLS R ∼< 0 km/s for 180◦ < ℓ < 360◦, while gas outside the
Sun’s orbit occupies the other two (ℓ, v) quadrants.

3. HISA Galactic Distribution

HISA is very common at arcminute resolution (Gibson et al. 2000; Dickey et al. 2003).
The rich structure and sheer number of HISA clouds in the IGPSare too much to
analyze by hand, so automated methods of feature identification and extraction were
developed (Gibson et al. 2005a; Kavars et al. 2005). Reliable HISA identifications
are distinguished from gaps in the general H emission by having narrow lines, fine
angular structure, and smooth, bright backgrounds. These criteria select real features
that appear as coherent entities in “movies” of successive velocity channel maps in
(ℓ, b, v) image cubes, often with significant kinematic structure. One can also require
molecular/dust tracers for verification (e.g., Knapp 1974b), but theselimit detections
to the target clouds, missing the larger HISA population. Ofcourse, the other criteria
miss HISA with broader lines, weaker backgrounds, etc., butsuch features are hard to
distinguish algorithmically from emission gaps. They can be identified by eye (Knee &
Brunt 2001) but cannot be included in any population study using uniform criteria.

HISA surveys have been published for the Phase-I CGPS (Gibson et al. 2005b) and
SGPS (Kavars et al. 2005), and partially for the VGPS and CGPS-II (Gibson et al. 2004,
2007). Fig. 4 shows the longitude-velocity distribution from all these surveys, with
the SGPS reprocessed using the CGPS algorithm. The HISA (ℓ, v) distribution looks
quite similar to its HICA equivalent (Strasser et al. 2007, Fig. 7). Weak self-absorption
is found essentially everywhere that emission backgroundsare bright enough, while
stronger HISA is clumped into complexes along spiral arms, tangent points, etc. Abun-
dant outer-Galaxy HISA and HICA are present in the Perseus and Outer arms for
0◦ < ℓ < 180◦, and in the Sagittarius and Perseus arms for 180◦ < ℓ < 360◦ (see
Fig. 5 for arm labels).
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The spatial distribution of IGPS HISA clouds is a function ofthe conditions re-
quired to produce such cold H and the radiative transfer geometry needed for it to
self-absorb. In the outer Galaxy, where pure circular rotation allows only one distance
for a given velocity, the presence of HISA requires other gasmotions to provide the
emission background. Turbulent eddies can make backgrounds for the scattered weak
HISA, but spiral density waves are needed for the more organized strong HISA (Gibson
et al. 2005b). Cold H may arise naturally downstream of spiral arm shocks (Minter
et al. 2001; Bergin et al. 2004), and colliding turbulent flows could make cold clouds
on smaller scales (Vázquez-Semadeni et al. 2007), so both mechanisms that reveal cold
H  as HISA may also be responsible for its creation.

In the inner Galaxy, individual spiral arms are difficult to discern (Kavars et al.
2005; Gibson et al. 2007), either because cold interarm H is common, or because
the arms themselves are less well separated in (ℓ, v). Circular rotation allows two dis-
tances per velocity here, so near-side cold H automatically has a far-side emission
background, whether in arms or not. This is probably why the inner-Galaxy HISA is
more prominent and widespread. It is also the rationale behind using the detection of
HISA in CO clouds to resolve near/far kinematic distance ambiguities (Jackson et al.
2002; Busfield et al. 2006; Anderson & Bania 2009; Roman-Duval et al. 2009). Such
analyses presume no far-side HISA occurs, or it is “filled in”by near-side emission.
The former is unlikely given outer-Galaxy HISA (see also Fig. 7), while the latter re-
quires a conspiracy of matching foreground NHIE features. Near-side HISA may be so
abundant that these caveats are minor, but they should be assessed carefully. The addi-
tional implicit assumption that HISA only arises within CO clouds is also problematic;
selecting only HISA matching the shapes of CO clouds may help(Anderson & Bania
2009), but there is no guarantee of identical HISA+CO morphology (e.g., Fig. 3).

4. HISA Relation to Molecular Gas

The IGPS HISA has a varying degree of correspondence with CO emission (Fig. 5).
Close inspection of HISA in the CGPS and VGPS shows thatmost inner-Galaxy HISA
has matching CO, but most outer-Galaxy HISA does not. In the SGPS, which is dom-
inated by inner-Galaxy HISA, only∼ 60% of identified HISA clouds contain CO
(Kavars et al. 2005). CO without HISA is readily explained assimply lacking the req-
uisite bright H emission background. The reverse case of HISA without CO is more
interesting, as standard CNM equilibrium models cannot explain very cold H without
molecular gas (Wolfire et al. 2003). Either the CNM models don’t always apply, or
some HISA clouds have H2 untraced by CO.

HISA without H2 might arise if a shock removed the dust grains responsible for
photoelectric heating (Heiles & Troland 2003). The next-most important heat source,
starlight photoionization of C, would yield a much lower gas temperature (Spitzer
1978; Kulkarni & Heiles 1988; Wolfire et al. 1995). Oddly, such clouds might be stable
as very cold H, since the same kind of dust dominates both photoelectric heating and
H2 formation: very small grains and/or aromatic hydrocarbons (Bakes & Tielens 1994;
Habart et al. 2004). Grains of this sort may be destroyed in strong shocks (O’Halloran
et al. 2006; Micelotta et al. 2010). However, many shocks would be needed to account
for all the weak HISA without CO. At the same time, the shocks could not be too large-
scale, since many stronger HISA features have partial CO correspondences (Fig. 3). So
some CO-free HISA might be explained in this way, but certainly not all.
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Figure 5. IGPS HISA (ℓ, v) distribution as in Fig. 4, but with Dame et al. (2001)
CfA 12CO J = 1− 0 contours for latitude-integrated emission

∫

TB db= 0.4 K deg,
near the survey sensitivity limit. Relevant spiral arms andtangent points are marked.

H2 without CO emission can occur deep in molecular cores and in H2 cloud outer
envelopes. In cold cores, CO freezes onto grain mantles (Bergin & Tafalla 2007).
But this requires densities∼> 105 cm−3, much higher than normal HISA gas proper-
ties (Goldsmith & Li 2005; Klaassen et al. 2005), and CO wouldstill be visible in a
lower-density region surrounding the core. In molecular cloud envelopes, and diffuse
molecular clouds generally, UV absorption studies show that H2 is shielded from dis-
sociating UV photons but CO is not for column densities ofNH ∼ 3 − 5 × 1020 cm−2

(Snow & McCall 2006; Sheffer et al. 2008). In addition, both the FCRAO Outer Galaxy
and CfA Composite12CO J = 1 − 0 emission surveys (Heyer et al. 1998; Dame et al.
2001) have sensitivity cutoffs near∼ 2 K km/s, orNH ∼ 7× 1020 cm−2 using the CfA
conversion factor. Thus, current CO emission studies are blind to H2-dominated gas for
NH ∼ 3−7×1020 cm−2, which may include a significant fraction of the total cloud mass
(Wolfire et al. 2010). H2 in this regime has been inferred from gas property constraints
in HISA clouds (Hasegawa et al. 1983; Klaassen et al. 2005; Hosokawa & Inutsuka
2007), from “infrared excess” clouds with more dust thermalradiation than their H
would imply (Reach et al. 1994; Douglas & Taylor 2007), and from “dark gas” clouds
with a similar excess of proton-scatteredγ-rays (Grenier et al. 2005; Abdo et al. 2010).
The widespread detection of CO-free diffuse H2 makes it a likely host for HISA.

Since many HISA clouds are near spiral density waves in longitude-velocity space,
the HISA-CO relationship may beevolutionaryrather than static. In the grand-design
view of star formation, diffuse atomic gas entering a spiral arm is compressed in a spiral
shock (Roberts 1969). Its sudden high density leads to rapidcooling (Spitzer 1978),
H2 condensation (Koyama & Inutsuka 2000; Bergin et al. 2004), and star formation
(Roberts 1972; Heyer & Terebey 1998). This scenario has beenproposed for HISA in
the CGPS (Gibson 2002; Gibson et al. 2005b), VGPS (Minter et al. 2001; Gibson et al.
2007), and SGPS (Sato et al. 1992; Kavars et al. 2005) regions. In outer-Galaxy arms,
the HISA traces cold H on the near side of the arm and immediately downstream of
the shock, where it is backlit by warmer H emerging on the far side of the arm (Gibson
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et al. 2005b). The HISA and CO appear poorly mixed in all the outer-Galaxy arms in
Fig. 5, because (1) the HISA may form faster than the CO, or without sufficient UV
shielding for CO, and (2) much of the CO may lie deeper within the spiral arm, with
less H emission behind it for illumination. Inner-Galaxy sight lines show much more
CO with HISA, since all near-side clouds have far-side backgrounds (see§ 3).

Excitingly, Braun et al. (2009) have recently identified “self-opaque” cold H
emission features in exquisitely sharp WSRT images of M31, which is too inclined for
cold H  to appear as HISA in the same fashion as in the Milky Way. Not only do many
of the opaque H clouds lie along the edges of spiral arms near spiral shocks,but they
also exhibit the same incomplete correspondence with CO as IGPS HISA.

5. Cold H  in Numerical Models

The computing power that enabled the IGPS also allowed significant advances in ISM
numerical models at scales of interstellar clouds (Vázquez-Semadeni et al. 2006, 2007;
Hennebelle & Audit 2007; Hennebelle et al. 2008) and spiral arms (Dobbs et al. 2006,
2008; Kim et al. 2006, 2008). While these new models are very interesting, only a
few have been put in a form that can readily be compared to datafrom a real radio
telescope (e.g., Hennebelle et al. 2007; Douglas et al. 2010). This is accomplished
through “synthetic observations” of numerical models inside the computer, applying
radiative tranfer to (x, y, z) grids of density, temperature, and velocity to produce (ℓ, b, v)
brightness temperature grids of, e.g., H 21cm line emission. It is natural to wonder
how well CNM tracers like NHIE and HISA can be discerned in such simulations, and
whether comparisons to real observations can constrain themodel physics.

Gibson et al. (in prep) have made synthetic observations of 100×100 pc2 magneto-
hydrodynamic (MHD) models of gas with a wide range of densities and temperatures
from Gazol et al. (2005, 2009), to see (a) under what conditions cold H can be iden-
tified as HISA or NHIE, and (b) how well the appearances of these features under
different model conditions match real HISA and NHIE clouds. As Fig. 6 shows, NHIE
features are common, with amplitudes and line widths similar to CGPS NHIE (Fig. 1),

Figure 6. Left: 100× 100 pc2 2-D MHD model log(density) field (0.05 pc cells).
Center: Synthetic observed spectrum through the model. NHIE features appear
as matching peaks inTB andτ. Right: Synthetic spectrum from 40 concatenated
models. This simulates a much larger ISM column, providing adequate backgrounds
for HISA, in whichTB dips coincide withτ peaks.
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Figure 7. Top: Synthetic (ℓ, v) observations of a simple 2-D Galactic H model
with cold H  downstream of spiral shocks, where it is visible as HISA (Bell &
Gibson, in prep). The intensity scale is negative, so absorption appears light.Lower
Left: Spectrum atℓ = 23◦, showing HISA in outer-Galaxy arms and both near- and
far-side inner-Galaxy arms; one Scutum-Crux arm crossing appears in NHIE.Lower
Right: Plan-view of the model density distribution (dark is more dense).

but there is not enough H emission background for HISA. This can be crudely ad-
dressed by observing many models end-to-end to simulate a larger region (Fig. 6), al-
though this requires a considerable path length if the mean model density (1 cm−3) is
not increased. Curiously, even with many models added together, the classical WNM
gas withT > 1000 K does not produce enough background emission by itselffor the
HISA to be seen. The rest of the emission comes from cooler gas, including thermally
unstable gas between the equilibrium WNM and CNM regimes. Such unstable gas,
predicted by prior simulations (Gazol et al. 2001), has beenfound in great quantity in
recent HICA studies (Heiles 2001; Heiles & Troland 2003).

An alternative approach is to model the whole Galaxy, including density, temper-
ature, and velocity variations in spiral arms. Fig. 7 shows an example of this with cold
H  in bands downstream of spiral shocks (Gibson 2006; Bell & Gibson, in prep). The
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arm positions and shock parameters are not intended to be exact, as the goal is merely to
seek qualitative agreement with the HISA seen in the IGPS. The arm pattern is adapted
from Taylor & Cordes (1993), with a Wolfire et al. (2003) global H  distribution and
flat rotation curve modified by Roberts (1969, 1972) spiral shocks. Each 25 pc (x, y)
model cell contains either pure WNM (T = 8000 K, n ∼ 0.5 cm−3) or pure CNM
(T = 40 K, n ∼ 100 cm−3), with the latter usually confined to the major spiral arms
(not the Local arm in this example). This simple model produces copious HISA in spi-
ral arms all across the Galactic disk (Fig. 7). The WNM fillingfactor is fudged here
(100%), but emission backgrounds are too weak to make HISA with the local value
(∼ 50%; Heiles & Troland 2003). As with the MHD model above, thismay indicate
that real HISA backgrounds arise from a mix of classical WNM gas and cooler, more
opaque H emission. For clarity, the sample model in Fig. 7 has no turbulence, nor
any cold H between arms. Experiments with different models indicate that the IGPS
outer-Galaxy HISA is best explained by turbulent CNM in armsrather than random
clouds throughout the disk, while inner-Galaxy HISA requires at least some interarm
CNM, or arms that are less clearly separated in radial velocity (Gibson et al. 2007).

Douglas et al. (2010; Douglas, this volume) use a more sophisticated approach
with 3-D (ℓ, b, v) synthetic observations of the Galactic-scale MHD models of Dobbs
et al. (2008) to simulate the CGPS H data set. They find considerable HISA in their
own version of the Perseus arm and are able to track throughout the radiative transfer
to determine exactly where the HISA arises and under what conditions.

6. Magnetic Fields?

The influence of magnetic fields on ISM structure is unclear but may be significant
(Kulkarni & Heiles 1988). Fig. 8 shows a possible alignment of H  emission filaments
and ~B-field direction measured from starlight polarization. Thefilaments are near the
detection limits for 3′ smoothed CGPS data (∆TB ∼ 5 K), but those that can be isolated

Figure 8. CGPS H emission filaments in local gas (vLS R= +5 km/s). Lines show
interstellar magnetic field direction from starlight polarization data (Heiles 2000). A
line 1◦ long represents 5% optical polarization.
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in velocity are cold (∆v ∼ 5 km/s), with column densities similar to small HISA features
(NH ∼ 5 × 1019 cm−2 for τ << 1). Many such alignments are visible over the survey
area. Is the field following the filaments, or vice-versa? McClure-Griffiths et al. (2006)
found a similar alignment in stunning SGPS images of the Riegel & Crutcher (1972)
HISA cloud. Following their analysis using the RMS scatter of position anglesσPA
(Chandrasekhar & Fermi 1953), the predicted CGPS mean sky-plane field strength is

〈B⊥〉 = 63.5µG

(

10◦

σPA

)

√

(

100 pc
d

) (

3′

∆θ

) (

∆TB

5 K

) (

∆vturb

5 km/s

)

. (2)

This is an order of magnitude more than expected for the diffuse ISM, but it’s consistent
with the McClure-Griffiths et al. (2006) HISA and some other cases (e.g., Andersson &
Potter 2005). Could some CNM gas have strongB-fields? More sensitive Arecibo data
show similar alignments for fainter filaments (∆T ∼> 0.5 K; J. Peek, in prep) that may
probe more ordinaryB-field strengths of a fewµ G.

7. GALFA and Future Surveys

The IGPS surveys have transformed our view of the CNM at arcminute scales, but
they are hampered by 20th-century interferometer sensitivities. Another approach is to
use the Arecibo 305m telescope to map cold H with a slightly larger beam (3.4′) but
much better sensitivity. The latter, along with installation of the ALFA 7-beam feed,
has allowed better velocity sampling and more rapid mappingin the Galactic ALFA
(GALFA) H  survey (see Peek, this volume). GALFA targets the whole Arecibo sky
(−1.3◦ < δ < 37.9◦; 32% of 4π sr), including the 1st quadrant and anticenter in the
plane and a wide swath of high-latitude gas. GALFA’s sensitivity, resolution, and sky
coverage are thus highly complementary to the IGPS. A great many beautiful cold H
features are visible in GALFA data (e.g., Fig. 9).

Next in line is GASKAP, the Galactic spectral line survey with the Australian
SKA Pathfinder (Dickey, this volume). By incorporating new array-feed technology
on an interferometer, ASKAP combines the field-of-view of small dishes like DRAO
with better resolution, speed, and bandwidth — enough to capture both H and OH
emission, so that the CNM and a hitherto elusive tracer of themolecular medium can
be surveyed together for the first time. GASKAP will image thewhole Galactic plane
within |b| < 10◦ andδ < +40◦ at 10− 20′′ resolution, yeilding an unprecedentedly
rich panorama of the dynamic ISM in our home galaxy. Further down the road, the
SKA will enable sensitive H imaging at few-arcsecond scales, matching photographic
sky surveys at last, and enabling studies of nearby Galaxiesat the same level of detail
the IGPS pioneered for the Milky Way. Both ASKAP and the SKA will also be HICA
machines, capturing a huge grid of gas measurements that will revolutionize our view
of the Galaxy yet again. The future looks very bright for studies of “dark” gas!
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Figure 9. The northeast part of Orion.Left: IRAS 100µm dust emission;Right:
GALFA H  at+10 km/s (not fully mapped). Contours are CfA CO 1-0 line integral
at 1 K km/s. Starsα andλOri are marked, as are the Ori B and N. Filament molecular
complexes; the∼ 8◦ diameterλ Ori molecular ring can also be seen. Richly-detailed
HISA is visible in many CO clouds and outside a few (e.g., nearα Ori). HISA has
been detected previously in this region (McCutcheon et al. 1978; Wannier et al. 1983;
Sandqvist et al. 1988; Li & Goldsmith 2003) but has never beenimaged as above.
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