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Abstract. I present 2-D angular power spectra of cold H i emission and
optical dust reflection tracing the H i in the Pleiades reflection nebula. This
analysis reveals a uniform power-law slope of −2.8 over 5 orders of magnitude
in scale, from tens of parsecs down to tens of astronomical units.

1. Introduction

Multiscale structure in the neutral atomic ISM is well known (e.g., Green 1993;
Deshpande et al. 2000; Dickey et al. 2001). A quantitative examination of this
structure over a wide range of scales may help us understand the physical causes
(e.g. turbulent cascades), especially if the smaller scales can be probed. Such an
examination is usually difficult with H i 21cm line observations, due to sightline
confusion and sensitivity limits at high resolution. However, H i and dust should
be well mixed in cold gas, so dust may trace H i structure at finer scales. Power-
spectrum studies of dust infrared emission show power-law behavior similar to
H i emission (e.g., Gautier et al. 1992), and one study of optical dust reflection
in cirrus does as well (Guhathakurta & Cutri 1994).

Here I present optical and H i maps of the ISM associated with the Pleiades,
where dust grains in a passing cloud are illuminated as a reflection nebula
(Gordon & Arny 1984; White 1984; Breger 1987). Since the cluster is nearby
(∼ 130 pc; Percival et al. 2005) and there is minimal dust in front of the neb-
ula (Černis 1987), optical features are easily related to specific spatial scales.
The nebula’s rich optical structure is illustrated in Figures 1 and 2. H i

maps must be interpreted with more caution, since some emission may lie in
the background; however, the emission shown in Figure 3 has the same veloc-
ity as interstellar absorption associated with the nebula and matches the dust
distribution in morphology.

2. Analysis

Each image was run through a 2-D Fast Fourier Transform (FFT) algorithm
(Press et al. 1988), and a map of the FFT modulus was computed as the quadra-
ture sum of the real and imaginary transform components. The modulus values

were then binned by “radial frequency” fr ≡

√

fx
2 + fy

2, and the 2-D angular

power spectrum P (fr) was constructed as the square of the median modulus
in each fr bin. The median statistic is robust against most artifacts that arise
from “wraparound discontinuities” between the right and left or top and bottom
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Figure 1. Pleiades optical nebula, negative logarithmic intensity scale. Top
left: 40-field mosaic from the 0.6m Burrell Schmidt telescope (Gibson & Nord-
sieck 2003a). The boxed area is shown in the lower panel. Bottom left: neb-
ular core in the same mosaic. The boxed area is shown in Figure 2. Right
panels: 2-D angular power spectra derived from the images at the left.

image edges. However, the 2 or 3 lowest-frequency bins may still have excess
power in some cases, particularly for the WIYN data. Image apodization alle-
viated this problem for the H i maps but did not help with the WIYN data;
the Schmidt and HST images produced minimal edge artifacts. Stars were also
removed from the WIYN image prior to the FFT, so the power spectrum is quite
clean aside from edge effects. No significant stars were present in the HST image.
Stars were not removed from the Schmidt mosaic, because the total map flux
is dominated by the nebulosity near the brightest stars; however all saturated
pixels were replaced by neighbor interpolation.

The power spectra are shown individually in Figures 1 - 3 and together
as a composite spectrum in Figure 4. Angular frequency is measured in cycles
per arcsecond. The dashed lines indicate valid ranges of measurement, particu-
larly where the resolution limits of different data sets occur; near the resolution
frequency, photon noise flattens the WIYN and HST spectra, and H i power
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Figure 2. Pleiades optical nebula, negative logarithmic intensity scale. Top
left: Wisconsin-Indiana-Yale-NOAO (WIYN) 3.5m image of nebular fine
structure east of the 4th-magnitude star Merope, extended to indicate the
position of the star and of the panel below. Image courtesy of C. J. Conselice
and J. S. Gallagher. Bottom left: Hubble Space Telescope Planetary Cam-
era (HST-PC) image of Barnard’s Merope Nebula, IC 349 (Herbig & Simon
2001), 30′′ south of Merope. Image courtesy of T. Simon. Right panels: 2-D
angular power spectra derived from the images at left.

drops precipitously. Over 62% of the large-scale H i map is Dwingeloo data, so
the 1◦ LAB Nyquist limit sets the resolution frequency for that spectrum.

3. Discussion

All power spectra in Figures 1 - 4 are plotted against a power law with the
same slope of −2.8, which was adopted from visual inspection. Within the
dashed lines, most spectra are remarkably consistent with this power law. This
includes the Schmidt spectra at scales

∼
< 1000′′ (log fr ∼

> −3), despite the pres-
ence of stars in the image. The consistency between the WIYN and Schmidt
spectra supports both being dominated by nebulosity. At scales

∼
> 1000′′, the
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Figure 3. Pleiades H i 21cm-line emission, negative scale. Bright stars and
Schmidt mosaic boundaries are shown for reference. Top left: 192-field mosaic
using the D-configuration Very Large Array (VLA-D), with short spacings
provided by the Green Bank 43m telescope (Gibson et al. 1995). Linear
intensity scale. Bottom left: Full Green Bank map (white contour) padded
to 128x128 GB pixels with Dwingeloo - Leiden/Argentine/Bonn (LAB) 25m
data (Kalberla et al. 2005) for FFT analysis. VLA area is small square.
Logarithmic intensity scale. Right panels: Angular power spectra. The lower
spectra are for single channels with vlsr = +10 km s−1; the upper spectra are
integrated over the H i line.

Schmidt spectrum deviates from the power law, probably because the stellar
illumination pattern is becoming more important than the observed dust den-
sity structure. For scales larger than the cluster core, the spectrum flattens
in the absence of additional illumination structure. Similar “illumination bias”
behavior is observed in power spectra of the smooth nebular models of Gibson
& Nordsieck (2003b), at both optical and far-infrared wavelengths. The FIR
model results indicate that, unfortunately, 100 µm maps from the Infrared As-
tronomical Satellite (IRAS) cannot be used to study multiscale structure in the
Pleiades, because the 5′ IRAS beam is too close to the illumination scale.
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Figure 4. Composite of the optical and H i angular power spectra shown in
Figures 1-3. The relative scalings have been adjusted to fit a uniform power
law, but the slope of each spectrum is unaltered. The dashed lines mark ranges
of measurement for each data set. “Wavelength” = 1/spatial frequency. The
maximum wavelength of any image is the image width, and the minimum is
either twice the beam width or twice the pixel width, whichever is greater.

The HST results are surprising. While some of the long, parallel streamers
in the map are probably part of the larger nebular structure visible in the WIYN
image, the bright structure in the HST map is from IC 349, an intense 20′′

clump whose dynamical relation to the larger Pleiades nebulosity is controversial
(Barentine & Esquerdo 1999; Herbig & Simon 2001; White 2003). IC 349 has
the appearance of a lumpy, limb-brightened, optically-thick cloud, while most
Pleiades optical nebulosity resembles smooth, optically-thin filaments. Thus
it seems unlikely that IC 349 is typical of nebular structure elsewhere in the
Pleiades at these scales. Yet the HST power spectrum is quite similar to the
WIYN and Schmidt spectra. It is hard to understand this result unless the
power spectrum is relatively insensitive to morphology.

The H i power spectra are preliminary, as they have not yet been corrected
for possible noise contamination. But if noise is not significant, as is probably
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true for at least the single-dish data, then the H i and dust slopes agree well
enough to suggest a single power law for both, even at scales larger than that of
the Pleiades nebulosity. This could indicate that the Pleiades ISM structure is
the same as the more general ISM, which is consistent with the nebula merely
being a chance illumination of ordinary interstellar material. On the other hand,
there is no apparent difference in the slope of single-channel H i emission vs. that
integrated over all relevant velocities, which does not agree with the theoretical
predictions of Lazarian & Pogosyan (2000) for the general ISM. In any case,
when combined, all of the Pleiades power spectra appear consistent with a single
power law over 5 orders of magnitude in angular and physical scale.

4. The Next Step: H i Self-Absorption Structure

Near the Galactic plane, where dust and H i emission are more confused, H i

self-absorption (HISA) may serve as a useful cold gas tracer (e.g., Gibson et al.
2005). A HISA power spectrum investigation is underway.
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