Harmonic Motion of a Mass on a Vertical Spring

Purpose

The purpose of this experiment is to investigate harmonic motion by studying a mass oscillating on
the end of a vertical spring. A sonic ranger position sensor is used to measure the position of the
mass and a force sensor is used to measure the force exerted by the spring. The spring constant
and frequency of oscillation are determined. In addition, the size of the mass is increased in order
to introduce air resistance to the system. The damping coefficient is measured and compared to the
cross-sectional area of the mass.

Background

Simple Harmonic Motion

Simple harmonic motion occurs when the restoring force on a mass is proportional to the
displacement of the mass from its equilibrium position. If the restoring force is provided by a

spring of force constant k and x is the displacement from equilibrium, then this relationship can be
expressed as

F = —kx

which is known as Hooke’s Law. The negative sign indicates the force and displacement are in
opposite directions.

Application of Newton’s second law yields

F =ma= —kx
d%x k
C=gET T

Notice that since x isn’t constant, the acceleration is not constant. The simplest method to solve this
differential equation is to notice that oscillatory functions like sine and cosine have the property
that if you take two derivatives then you get the same function back but multiplied by a negative
constant. This suggests trying a solution of the form

x = xo + Acos(wpt + ¢)
which is found to work if the frequency of oscillation is given by
k

Wy = |—
m

In the above expression A is the amplitude of the oscillation, ¢ is the phase, and X is a constant
offset in case the equilibrium isn’t at x=0. The relationship between the period (t) and the angular
frequency can be found by noting that the cosine function goes through one complete cycle as its

argument increases by 2z, Thus, the angular frequency is given by

2n
Wy = —
T

This will be helpful when making initial guesses for wo when fitting the data.

Differentiating the position once gives the velocity
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dx

v= i —wA sin(wt + ¢)
and again gives the acceleration
dv
a=—= —w?A cos(wt + ¢)

Damped Harmonic Motion

The above discussion of simple harmonic motion neglects certain fundamental truths of the “real
world.” In reality, an oscillator travels through a viscous fluid, namely air, which resists the motion
with a force that depends on the speed of the object. For many cases, specifically, when the
oscillator mass is large and the cross-sectional area small, this resistance may be neglected with
little consequence.

In cases when air resistance may not be neglected, however, there is a significant change in the
behavior of the oscillator. Consider a mass-spring system subject also to an resistive force that is
directly proportional to the speed

FR = _bv

where b is a constant called the damping coefficient. The equation of motion and resulting
differential equation in this case become

Fpet = —kx — bv =ma
o — b dx d%x
x dr  de?
d%x N b dx N ko 0
dt?2  mdt B

The solution to this differential equation, while rather straightforward, involves techniques not
normally covered at this level so we will state the solution without proof. The nature of the solution
depends upon the strength of the damping. In cases when b is small, called underdamped motion,
the solution is given by

b
x = Ae"2m" cos(wt + ¢)

The “amplitude” of this oscillation decreases exponentially with a rate proportional to the damping
parameter. The oscillation frequency also depends on the damping coefficient according to

kb b

— 2

m 2m “o 2m

where wy is the undamped frequency from simple harmonic motion.
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Pre-Lab Questions

1. Suppose that you have a mass oscillating on a spring and that you have measured the position
of the mass and the force exerted on it by the spring. Describe a graphical technique that you
could use to determine the force constant k of the spring from these data.

2. When you compare your experimentally determined frequency of oscillation (wo) found from
the position versus time data to the theoretical value of \/k/m you will find that they do not
agree very well. The primary reason is that the theoretical value was derived assuming that the
spring didn’t have any mass. In this question you will show that if the mass of the spring (m;) is
included that the theoretical oscillation frequency will be given by

k

mS
m + 3

Wy =

~

The reason that only 1/3 of the spring mass is included in the equation is
because not all of the spring is in motion. The end of the spring attached to
the mass hanger moves with the same velocity v as the mass hanger. The
other end of the spring is fixed and has zero velocity. Suppose that the total
length of the spring at any moment is Y. Imagine dividing the spring into
small pieces each of mass dm and length dy and that the distance of this
piece of the spring from the fixed end is y (as shown in the figure). Show
that if you assume the velocity increases linearly along the spring that the
velocity of this piece will be given by

a
3

SSSSS LSS LSS S S S/
=3

E

velocity of mass segment dm = %v

Use this result to show that the kinetic energy of the spring is 2msv2. To do this, add up
(integrate) the kinetic energy of each mass segment dm over the entire length of the spring.
Since the kinetic energy of the spring is

1 mg

2(3)v
the effective mass of the spring that must be included in the formula for the oscillation
frequency is m;/3.

3. You probably expect that as the size of the mass increases that the amount of damping as
indicated by the damping coefficient b would also increase. But what is the specific relationship
between the damping coefficient and the object size? Is b proportional to the radius of the
mass, or the area, or some other function? If you know b for different size objects (all of the
same mass), describe a graphical method that you could use to determine the relationship
between b and the size of the object.
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In-Lab Procedure

1.

10.

11.

12.

Measure and record in your lab notebook the masses and diameters of the mass hangers that
will be used in the experiment. Also measure and record the mass of your spring.

Arrange the iWorx MDN-100 position sensor so that it is directly below the vertical oscillation
of the mass on the spring. Mount the iWorx force sensor directly above and high enough that
the spring and mass can oscillate without getting too close to the position sensor.

Connect the myDAQ (or ELVIS workstation) to the computer with the USB cable and connect
the position and force sensors to the myDAQ (or to the ELVIS). Be sure to record in your lab
notebook the analog input channels you use for each sensor.

Open the Physics Lab Assistant software. Create a Position waveform using the Add button on the
Analog Input Waveforms tab. Be sure to associate this waveform with the same physical channel
that you connected the position sensor to previously.

Select the Position waveform in the Analog Input Waveforms table and use the Calibrate button to
perform a two-point calibration of the sensor. For best results use two points that cover the
extremes of the expected motion and then check the calibration somewhere in the middle of
this range. Recall that you shouldn’t place anything closer than 15 cm to the front of the
position sensor.

Create Velocity and Acceleration waveforms using the Add button on the Derived Waveforms tab. Be
sure to enter the correct relationship to compute these waveforms from previously defined
waveforms.

Create a Force waveform using the Add button on the Analog Input Waveforms tab. Be sure to
associate this waveform with the same physical channel that you connected the force sensor to
previously.

Select the Force waveform in the Analog Input Waveforms table and use the Calibrate button to
perform a two-point calibration of the sensor. Calibrate the sensor in Newtons. Use one
calibration weight that is very small and the other that is twice as heavy as the mass you will
use in the experiment.

Use the Save button under the Experiment Setup area at the top of the screen to save these
waveform definitions and calibration to a file. This file can be used to restart the experiment
without having to re-define the waveforms and recalibrate in the event you have to start over.

Mount the smallest diameter mass (just a hanger and mass without any extra sail) onto the end
of the spring and hang the spring from the force sensor. Start the mass oscillating by pulling it
down approximately 10 cm and releasing it. Practice doing this in such a way that the spring is
not swinging side-to-side and does not have its own internal oscillation. The results improve
after the mass has been oscillating for a few seconds allowing the transient oscillations to damp
out.

Using the Acquire button, acquire a set of position and force versus time data as the mass
oscillates on the spring. It may take a few practice trials to perfect your technique and get a
good set of data. You want to make the mass oscillate smoothly and in a vertical line above the
position sensor and obtain very smooth traces of position and force versus time.

Select the Waveforms tab to change the main display to show four graphs of Position, Force,
Velocity, and Acceleration. By inspection of the waveform traces, identify and record the phase
relationship between Position and Velocity, Velocity and Acceleration, Position and
Acceleration, Force and Position, and Force and Acceleration. In other words, are the
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waveforms exactly in phase with the other, are they exactly %2 cycle out of phase, or is one
leading or trailing the other by % cycle, etc.

13. When you are satisfied that you have a good set of data, export the waveforms to a file. Import
the data into your scientific graphing software and make plots of the force versus position and
position versus time.

14. Fit the force versus position data to a straight line. Record the slope and intercept and identify
the spring constant from these parameters.

15. Fit the position versus time waveform to the solution for the simple harmonic oscillator given in
the introduction. Extract the frequency of oscillation, amplitude, and phase from the fit
parameters and record these values on the plot and in your lab notebook.

16. Using your value for the force constant k and the mass m of the object determine a calculated
value for wo using the appropriate relation for simple harmonic motion. Compare this result to
the experimental value from the position versus time fit. Is the agreement improved if you
include the mass of the spring as described in Pre-Lab Question 2?

17. Replace the mass hanger with the next larger mass provided. Set the mass into oscillation and
collect a good set of position and force data. Export the waveform data and then fit the position
waveform to the solution for a damped oscillator. When performing the non-linear fit it will be
necessary to make initial guesses for the fit parameters xo, A, wo, ¢, and b. Visually estimate xo
and A from your graph. Estimate wo by observing the period of oscillation. Try ¢ = 0 rad and b =
0.1 kg/s as the convergence of the fit generally isn’'t affected by bad choices for these
parameters. Extract and record the damping coefficient b and the frequency of oscillation w.

18. Repeat the previous step for each of the masses provided. Record your results in a table with
columns for the diameter of the mass, the damping coefficient, and the frequency of oscillation.

Post-Lab

1. Show how you used your plot of force versus position to determine the force constant of the
spring.

2. Discuss the agreement (or lack thereof) between the value of the frequency of the simple
harmonic oscillator (no damping) calculated using

k
Wy = |—
0 m
and the value obtained from the fit to the position versus time data. Was the agreement

improved by including the mass of the spring as developed in Pre-Lab Question 2?

3. Discuss the dependence of the damping coefficient b on the size of the oscillating mass.
Describe the dependence with a relationship and create a plot to justify your results.

4. Discuss the dependence of the angular frequency of the damped oscillator on the damping
coefficient. Do your measurements follow the same trend as suggested by the theory presented
in the introduction?
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Graph 1: Force versus Position

Intercept = 9.63 £+ 0.06 N 7
Slope =-8.70 £ 0.08 N/m

= - slope = 8.70 £ 0.08 N/m -

Position [m]



Velocity [m/s] Position [m]

Acceleration [m/sz]

LI | LR rrrrprrri L B LI L
H O ! ! ! yo = 0.7616 + 0.0002 m
- R0 & @ & |A=01053£00003m
= S 7 Va\ X i\
[ Q) o Y G R 0 X o = 6.347 £ 0.0009 rad/s
D OxY, N/ Y,
' | <) & O, QP D 00 Q) &
B P D O d O ¢ & |‘|' 0 l‘" & ® ¢ =2.563 £ 0.005 rad
® <) 0, ® 0 —
N P ) O ® D ) () ® O ]
D & ¢ & ® ® b P )
0.80 & ¢ O o & 0 ONNGO b
0 () b & b ) ) S D ) ) ® (), )8 D )]
- P b o @ P o b O ¢ ()
b & O o o O o b ]
0.75 0 0 O ¢ b 0 ]
. O & P P o O
Y P o b6 & 9P P b P b L o ]
o ¢ 9 b o P 9 o P & ¥ 0 .
- 0 ® o P 0 ® i
N2 0 0 ® P 0 ® P ® 0
0.70 =4 0 O P O P ¢ P ‘.'. O ® P o X P I
Y ¢ 0 o P i3 030 o R .
PP d N (), 4y
Y ¥ o % W W % W :
- ¢ X X V 1) X ) & E
| "" [ | | | '(5' [ | '\5‘ | || [ | || 11 | [ | | |
0 2 4 6 8
Time [s]
J Ll I LI L Ll I LI g LI LB ( Ll I L B I LELELL N | yo = _0‘000 i 0.003 m/S
- Q (7 O O)
S & A 0 &3 0 76} Aw = 0.666 + 0.005 m/s
06 i d o) & & (- o6
n R ) 2 O DO g P ) P “" w =6.347 £ 0.002 rad/s
04F ¢® PO Fo& F % P P& |o=-215+£0.01rad
B O :,' X T ¢ 0 ® ¢ P
02F ¢ © P Q %9 ¢ 9 P 0
<E & P d & () A O & d O O ¢
- & D (3) & D) 0 (), O ©), O O
0.0F ® d OJER() O
“r O Q O © O & ¢ ) P O O
- & 0 ® ) D ¢ D & O @ &
0.2F ¢ o & ¢ b ¢ ®g P O &
F R0 ) d & “' 0) "'i & ® P O 4
- d { 0,
-04 — & @D ¢ X & ¢ O :: P D P
= Q) ) 0) DD d P
Co P 4P Ro OF P9 R QP
- ) \~ < A D 4
ol % ¥ ¥ ¥ ¥ ¥ @
-|||||I||||||||I||||||||||||||||||I|||||||||I||||
0 2 4 6 8
Time [s]
_| L L I UL L I rrrrprruri I LELELL N | 2 -
6 ) Yp=-0.00+0.09 m/s” |3
= o ) NE
C = O = .
4 @i Q &5‘ '.;,o & ro’{' w Anw =4.21+0.13m/s (4
Fd% 9O Sd. Fd sk B P ®=6.34+0.01rad/s |3
2 PO P HV PI 3 $=-058+006rad |
: © 9 p 5 d bR PG LT T 07 :
C <D D © ¢ D -
0 - I O B ¢ (3' p ¢ 1'). @ “": y
5 () "}.. 0 ) ) @ 0, O %)
e NI O AP 5 & D
- ¢ N &7 Qv el ®
n CJ o ¢ Y13 .
py = v <, N4 XP \J Q 3
== C .. & 0} ©) &) ’. -
- o oco © c9) -
-6 (8 7 o0 —_
C o) o) 3
Y= © © © o
: ©} o} o=
-10+||||I|||||||||I|||||||||I|||||||||I|||||||||I||||_
0 2 4 6 8

Time [s]



Position (m)

Graph 1: Position vs. Time
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