Western Kentucky University Department of Physics and Astronomy Undergraduate Student Planning and Advising Manual

Department of Physics and Astronomy
Western Kentucky University
1906 College Heights Blvd. \#11077
Bowling Green, KY 42101-1077
Tel: (270)745-4357
Fax: (270)745-2014
E-Mail: Physics.Astronomy@wku.edu

Table of Contents

1 InTRODUCTION 1
2 DEPARTMENTAL INFORMATION 1
3 Tenured and Tenure-Track Faculty 2
4 Departmental Advisors 3
5 Major Programs of Study in the Department of Physics and Astronomy 3
5.1 General Education Requirements 4
5.2 Major in Physics (Reference Code 754) 5
5.2.1 Placement Exams 6
5.2.2 Physics Graduate Preparation Option 7
5.2.3 Applied Physics Option 10
5.2.4 Astrophysics Option 12
5.2.5 Physics Teaching Option 12
5.3 Middle School Science Major (Reference Code 734) 15
5.4 Pre-Engineering Major (Reference Code 815) 16
5.5 Dual-Degree Option (Physics/Applied Sciences/Engineering) 16
5.6 Electrical Engineering/Physics Double Major (proposed) 16
6 Minor Programs of Study in the Department of Physics and Astronomy 18
6.1 Minor in Physics (Reference Code 435) 18
6.2 Minor in Biophysics (Reference Code 329) 19
6.3 Minor in Astronomy (Reference Code 318) 20
List of Tables
Table 1: Faculty Information 2
Table 2: Physics and Astronomy Special Programs of Study 3
Table 3: Requirements for General Education 4
Table 4: Basic Physics Requirements 5
Table 5: Physics Graduate Preparation Required and Recommended Courses 7
Table 6: Physics Graduate Preparation - Suggested Program of Study I 8
Table 7: Physics Graduate Preparation - Suggested Program of Study II 9
Table 8: Applied Physics Required and Recommended Courses 10
Table 9: Applied Physics Preparation - Suggested Program of Study 11
Table 10: Astrophysics Required and Recommended Courses 12
Table 11: Physics Teaching Required and Recommended Courses 12
Table 12: Astrophysics - Suggested Program of Study. 13
Table 13: Physics Teaching - Suggested Program of Study 14
Table 14: Middle School Science Education Requirements 15
Table 15: EE/Physics - Suggested Program of Study 17
Table 16: Physics Minor Requirements 18
Table 17: Biophysics Minor Requirements 19
Table 18: Requirements for Minor in Astronomy 20

1 Introduction

Welcome to the Department of Physics and Astronomy at Western Kentucky University! This document is provided as a reference to plan your academic program as majors and minors in our department. Keep in mind that course offerings within our programs and in other departments can change from year-to-year, and thus it's imperative that you frequently meet with an academic advisor to discuss your academic plans. Please refer to the Undergraduate Course Catalog (provided by the Registrar, and available on the university website, http://www.wku.edu) for the most up-to-date course descriptions, requirements, and policies pertinent to both the Department of Physics and Astronomy and to Western Kentucky University. Please direct any questions, comments, or suggestions on this manual to the departmental office.

2 Departmental Information

The Department of Physics and Astronomy is primarily located on the second floor of the Kelly Thompson Complex for Science, Center Wing, where we maintain the majority of our classrooms and faculty offices. We have approximately 50 to 60 enrolled students progressing toward a Bachelors of Science in Physics. Our mission is to prepare these students for advanced careers, providing each with an essential foundation for a variety of professional goals. Our graduates go on to become physicists in academic, government, and industrial laboratories, and teachers in secondary science education and vocational training. Our curriculum also prepares students for advanced-degree studies, in scientific graduate programs and in post-baccalaureate professional and engineering programs.

We maintain forefront facilities and equipment in support of our curriculum. From introductory University Physics to Atomic Physics and Optics, our laboratories are well equipped with modern apparatuses and data acquisition interfaces using software that is standard in the physics community. The Applied Physics Institute features truly unique facilities such as the large-chamber scanning electron microscope and the CyberDefence Laboratory, providing a multidisciplinary center for upper-level studies in nuclear physics, material science, medical physics, and homeland security. The Hardin Planetarium (adjacent to the building), and the rooftop observatory (featuring a 12 -inch refracting telescope), support introductory astronomy laboratories and public outreach opportunities for school groups and the general public. Students specializing in Astrophysics have access to two remotely operated astronomical observatories: the remote controlled Bell Observatory 24-inch telescope in rural Bowling Green, Kentucky; and the fully autonomous RCT 50-inch telescope located at Kitt Peak, Arizona.

Early science education is of critical importance to preparing future researchers and engineers, and to maintaining a science-literate society as a whole. In collaboration with the SKyTeach program, we offer degree programs to become certified in secondary school Physics Education, and in Science and Math education at the middle school level.

The diversity of our faculty is a major strength of our program, allowing students to benefit from a breadth of specializations. Our students are encouraged to participate in research opportunities with faculty members, generally starting in the second year of major course work. Student-researchers can be supported by available scholarships, work-study assistantships, or can earn independent study course credit.

3 Tenured and Tenure-Track Faculty

The faculty in the WKU Department of Physics and Astronomy are dedicated to serving the student majors and minors within the department. Feel free to contact any faculty member listed below if you have any questions about your academic program or other areas of the department.

Table 1: Faculty Information

Name Position	Office (*)	Phone Area Code (270)	Electronic Mail
Dr. Keith Andrew Professor, Department Head, Director of the Cyber Defense Laboratory	TCCW 247	745-4357	Keith.Andrew@wku.edu
Dr. Alexander Barzilov Associate Professor, Director of the Applied Physics Institute	TCCW 214	745-5484	Alexander.Barzilov@wku.edu
Dr. Scott Bonham Associate Professor, Chair of SKyTeach Program	TCCW 217	745-6196	Scott.Bonham@wku.edu
Dr. Michael Carini Professor, Director of the Bell Observatory	TCCW 229	745-6198	Mike.Carini@wku.edu
Dr. Vladimir Dobrokhotov Assistant Professor	TCCW 221	745-6201	Vladimir.Dorokhotov@wku.edu
Dr. Richard Gelderman Professor, Director of the RCT Observatory	TCCW 230	745-6203	Richard.Gelderman@wku.edu
Dr. Steven Gibson Assistant Professor	TCCW 231	745-3019	Steven.Gibson@wku.edu
Dr. Doug Harper Madole Family - Ogden Professor	TCCW 226	745-6194	Doug.Harper@wku.edu
Dr. Edward Kintzel Assistant Professor	TCCW 254	745-6200	Edward.Kintzel@wku.edu
Dr. Charles H. McGruder, III William McCormack Professor	TCCW 220	745-5277	Charles.McGruder@wku.edu
Dr. Ivan Novikov Assistant Professor	TCCW 246	745-4357	Ivan.Novikov@wku.edu
Dr. Roger L. Scott Professor, Director of the Hardin Planetarium	TCCW 224	745-3817	Roger.Scott@wku.edu
Dr. Louis-Gregory Strolger Associate Professor	TCCW 225	745-6204	Louis.Strolger@wku.edu
Dr. B. Wieb van der Meer Professor	TCCW 227	745-6205	Wieb.Vandermeer@wku.edu
Dr. Phillip Womble Professor	TCCW 232	$\begin{aligned} & 745-4052 \\ & 781-3859 \end{aligned}$	Phillip.Womble@wku.edu

* TCCW = Thompson Complex, Central Wing

4 Departmental Advisors

Each student at WKU is assigned an academic advisor in his or her major area of study. All students who do not have an approved degree program on file with the university must meet with their advisor each semester and gain approval of their proposed course schedule prior to registration. You should find your advisor to be a resource person who is happy to help you to plan and make wise choices regarding your academic program. You should also feel free to go to your academic advisor with any problem or issue that you may be facing. He or she will attempt to help you or refer you to appropriate personnel on campus who may be better suited to help with your problem.

The relationship between you and your advisor is a very important one. If for any reason you desire to change your advisor you should feel free to do so without any worry of upsetting your present advisor. Simply ask in the departmental office be assigned a new advisor or go to the faculty member of your choice to request that he/she become your new advisor.

Current department advisors are listed below. All advise for the Physics Graduate Preparation track in Physics (reference code 754) and Minor in Physics (reference code 435), but also advise in specific programs of study shown in the table below.

Table 2: Physics and Astronomy Special Programs of Study

Special Program of Study (ref. code)	Advisors
Pre-Engineering (815) Applied Science/Engineering Dual-Degree EE/Physics Double Major (Proposed)	Keith Andrew, Doug Harper, Philip Womble
Secondary Physics Teaching Middle School Science Education (734)	Scott Bonham, Richard Gelderman
Astrophysics Astronomy Minor (318)	Michael Carini, Richard Gelderman, Louis-Gregory Strolger
Applied Nuclear Physics	Alex Barzilov, Ivan Novikov,
Philip Womble	

5 Major Programs of Study in the Department of Physics and Astronomy

All of the programs described in this manual are designed to provide a sound knowledge of physical principles. The programs are also flexible to the extent that the student can select related courses in biology, chemistry, geology or astronomy to prepare for a career in interdisciplinary areas such as biophysics, geophysics, environmental science or chemical physics. When planning your program of study, you should be aware of the University academic requirements and regulations contained in the University Catalog in the chapter, "Academic Information." Specific attention should be given to the sub-
sections in the chapter entitled (a) Academic Programs, (b) General Requirements, and (c) Academic Requirements and Regulations.

5.1 General Education Requirements

All students following a four-year undergraduate degree program at WKU must fulfill general education requirements as described in the University Catalog, and summarized in the table below.

Table 3: Requirements for General Education

A.	Organization and Communication of Ideas I. ENG 100 - Freshman English I. ENG 300 - Junior English II. Second semester of a foreign language III. SCOM 145 or 161 - Public Speaking	12 Hours
B.Humanities (At least three fields must be represented) I. ENG 200 - Literature II. Elective II. Elective	9 Hours	
C.Social and Behavioral Sciences (At least three fields must be represented) HIST 119 or 120 - Western Civilization Elective Elective	9 Hours	
D.Natural Sciences \& Mathematics I. PHYS 255/256 - University Physics I Lecture/Lab I. CHEM 120/121 - College Chemistry I Lecture/Lab II. MATH 136 - Calculus I	9 Hours	
E.World Cultures and American Diversity Elective	3 Hours	
F.	Health and Wellness Two activity courses (PE 100, 101, 102, 103 or 104) Or HE 100 - Personal Health (Required for Teacher Certification)	2 Hours
	Total General Education Requirements	44 Hours ${ }^{1}$

See the University Catalog or a Course Bulletin for the current semester for a complete list of courses that satisfy each of the above general education categories

[^0]
5.2 Major in Physics (Reference Code 754)

The major in physics (reference code 754) requires a minimum of 61 semester hours of physics courses and leads to a Bachelor of Science degree. A minor or second major in a complementary program is required. The required mathematics support courses for the Physics major (see below) constitute a minor in Mathematics (reference code 417).

Table 4: Basic Physics Requirements

Area	Course	Description	Hours
Physics Core Courses	PHYS 180/181	Introductory Modern Physics and Laboratory	4.0
	PHYS 255/256	University Physics I and Laboratory	5.0
	PHYS 265/266	University Physics II and Laboratory	5.0
	PHYS 301	Electrical Measurements Laboratory	1.0
	PHYS 302	Atomic Physics Laboratory	1.0
	PHYS 321	Modern Physics II	3.0
	PHYS 350	Classical Mechanics I	3.0
	PHYS 398	Junior Seminar	0.5
	PHYS 440	Electricity and Magnetism	3.0
	PHYS 498	Senior Seminar	0.5
		Total Required Physics Core Courses	26.0
Physics Electives and Support Courses	PHYS \qquad PHYS \qquad PHYS \qquad	Upper division physics electives chosen from the courses listed for departmental majors and minors, excluding PHYS 389, 399 and 489 . No more than 3 hours of PHYS 475 may be counted toward the 9hour minimum requirement for these restricted electives.	9.0
		Total Required Physics Elective Courses	9.0
	MATH 136	Calculus and Analytical Geometry I	4.0
	MATH 137	Calculus and Analytical Geometry II	4.0
	MATH 237	Multivarible Calculus	4.0
	MATH 307	Introduction to Linear Algebra	3.0
	MATH 331	Differential Equations	3.0
	CS	Computer Science Course (CS 180 suggested)	3.0
	CHEM 120/121	College Chemistry I and Laboratory	5.0
		Total Required Physics Support Courses	26.0
		Minimum Required for Physics Certificate	61.0

Students preparing for graduate study or are pursuing a terminal bachelors of science advised to take additional departmental courses and/or additional sequences in other departments in support of their goals. The department has prepared several career-oriented options, which detail relevant departmental electives and additional or approved substitute support courses. The basic option, the Physics Graduate Preparation track, is designed for those students who wish to pursue careers in physics or astronomy and are preparing for graduate study. Student must work closely with the departmental advisor from the beginning to plan a program of study that meets departmental and University requirements and that maximize preparation to meet career goals.

5.2.1 Placement Exams

Prior to your first semester at WKU, and usually prior to or during your Academic Transitions Program orientation, you will be required to take at least three placement exams, the results of which will have lasting effect on your progress to your degree in physics. Some details and impacts of these exams are detailed below. There are additional placement exams that may be taken if you have had sufficient High School experience (e.g., in foreign language) to place out of preparatory courses. Speak with the Academic Transition Program coordinators for additional details on these placement exams, or see their website, http://www.wku.edu/orientation.

1. The Math Placement Exam - This exam is broken into two parts, the Online Mathematics Placement Exam (MPE), which all incoming students are required to take, and the Mathematics Placement Trigonometry Exam (MPTE), which is required for students majoring in most science programs, including physics. Both exams can be taken on-line, either prior to or during ATP, once you have already obtained a WKU ID\#. Please see the important note below.
2. The Chemistry Placement Exam - Students majoring in most science programs (including physics) are required to take the Chemistry Placement Exam (CPE). This exam must be taken in person, either before or during ATP. The CPE is 55 -minute exam on basic algebra, basic chemistry, and advanced chemistry. The results of the CPE will determine if you are eligible to take CHEM 120/121 (required for the physics degree), CHEM 116 prior to CHEM 120/121, or no chemistry at all until MATH 116 (College Algebra) is taken. Generally there is no preparation necessary for this exam, although some moderate math review can help to improve placement. There is a $\$ 13$ service fee that must be paid on-line prior to the exam.
3. Computer Science Placement Exam-The Computer Science Placement Exam (CSPE) is an optional exam offered to students interested in taking CS 180 (Computer Science I; recommended). This exam is taken in person, and must be obtained from the Math and Computer Science Department. The results of the CSPE determine if you are eligible to take CS 180, or must take CS 170 prior to CS 180.

An important note on the Math Placement Exam: It is essential that students have sufficient math preparation before beginning the major course work in the physics curriculum. Students are frequently surprised to learn that the MPE is moderately challenging and long (55 minutes for the MPE +30 minutes for the MPTE). Moreover the exam is essentially only taken once, making the results lasting. Poor performance can significantly delay progress toward your degree. Some moderate preparation for the exam could be the difference between entering the University Physics sequence in your first year, or having to wait until your second year. We strongly advise students to prepare for the Math Placement Exam prior to taking this test, either on-line or during your ATP orientation. This will insure a placement commensurate with the courses you have taken prior to enrollment.

The following sections detail the course work recommended to complete the basic and special programs of study. The program elective options can be changed to meet the particular interests of each student.

5.2.2 Physics Graduate Preparation Option

This option is designed to prepare students for graduate study in physics. Elective courses are chosen in the basic physics areas of mechanics, electricity and magnetism, statistical mechanics and quantum mechanics. Interested students may choose to take additional courses in specialty areas such as optics, solid-state physics, and nuclear physics if desired.

Table 5: Physics Graduate Preparation Required and Recommended Courses

Area	Description			Hours ${ }^{2}$
Gen. Ed	Minimum additional General Education requirements			35.0
Physics Core	Required Physics core courses			26.0
Recommended Physics Elective Courses	PHYS 330	Thermodynamics	3.0	
	PHYS 450	Classical Mechanics II	3.0	
	PHYS 480	Quantum Mechanics	3.0	
	Total Recommended Physics Elective Courses			9.0
Physics Support	Required Physics Support Courses			26.0
Recommended Physics Specialty Courses	PHYS 316 or 318	Physics Computing	3.0	
	PHYS 441/404	Optics + Laboratory	4.0	
	PHYS 445	Electricity and Magnetism II	3.0	
	PHYS 460/406	Solid State Physics + Lab	4.0	
	PHYS 470/407	Nuclear Physics + Lab	4.0	
	Recommended Additional Specialty Courses			18.0
Second Major	Mathematics - Reference Code 728			19.0
Total Curriculum Hours				133.0

We have prepared some suggested programs of studies (shown in the following tables) as examples to help you plan your course to graduation. Your actual four-year plan may vary based on your career interests and your pre-matriculation math preparedness (see important note on math placement in the section 5.2.1).

[^1]Table 6: Physics Graduate Preparation - Suggested Program of Study I
Major in Physics \& Astronomy + Major in Mathematics \& Computer Science

$1^{\text {st }}$ Fall Semester				$1^{\text {st }}$ Spring Semester			
MATH	136	Calculus and Analytical Geometry I	4.0	MATH	137	Calculus and Analytical Geometry II	4.0
ENG	100	Freshman English	3.0	PHYS	255	University Physics I	4.0
PHYS	180	Introductory Modern Physics	3.0	PHYS	256	University Physics I Laboratory	1.0
PHYS	181	Introductory Modern Physics Laboratory	1.0	CHEM	120	College Chemistry I	4.0
COMM	145 or 161	General Education B-II Elective	3.0	CHEM	121	College Chemistry I Laboratory	1.0
		Public Speaking	3.0	HIST	119 or 120	Western Civilization	3.0
		Total Hours	17.0			Total Hours	17.0
		$2^{\text {nd }}$ Fall Semester				$2^{\text {nd }}$ Spring Semester	
MATH	310	Discrete Math	3.0	PHYS	321	Modern Physics II	3.0
MATH	307	Introduction to Linear Algebra	3.0	PHYS	301	Electrical Measurements Laboratory	1.0
PHYS	265	University Physics II	4.0	MATH	237	Multivariable Calculus	4.0
PHYS	266	University Physics II Laboratory	1.0			General Education E Elective	3.0
	101	Gen. Ed. A-II Foreign Language Prep.	3.0		102	Foreign Language (Gen. Ed. A-II)	3.0
ENG	200	Literature	3.0	CS	180	Computer Science I	3.0
		Total Hours	17.0			Total Hours	17.0
$3^{\text {rd }}$ Fall Semester				$3{ }^{\text {rd }}$ Spring Semester			
MATH	382	Probability and Statistics I	3.0	PHYS	440	Electricity and Magnetism I	3.0
PHYS	350	Classical Mechanics I	3.0	PHYS	316 or 318	Physics Computing	3.0
PHYS	330	Thermodynamics	3.0	PHYS	470	Nuclear Physics	3.0
PHYS	302	Atomic Physics Laboratory	1.0	PHYS	407	Nuclear Physics Laboratory	1.0
MATH	331	Differential Equations	3.0	PHYS	398	Junior Seminar	0.5
		General Education F	2.0	MATH	435	Partial Differential Equations	3.0
		General Education C Elective	3.0	ENG	300	Junior English	3.0
		Total Hours	18.0			Total Hours	16.5
$4^{\text {th }}$ Fall Semester				$4^{\text {th }}$ Spring Semester			
PHYS	460	Solid State Physics	3.0	PHYS	450	Classical Mechanics II	3.0
PHYS	406	Solid State Physics Lab	1.0	PHYS	445	Electricity and Magnetism II	3.0
PHYS	441	Optics	3.0	MATH	429	Probability and Statistics II	3.0
PHYS	404	Optics Laboratory	1.0	MATH	450	Complex Variables	3.0
PHYS	480	Quantum Mechanics	3.0	MATH	498	Senior Seminar	1.0
PHYS	498	Senior Seminar	0.5			General Education (B II)	3.0
MATH	317	Introduction to Algebraic Systems	3.0				
		General Education C Elective	3.0				
		Total Hours	17.5			Total Hours	16.0

Table 7: Physics Graduate Preparation - Suggested Program of Study II
Major in Physics \& Astronomy + Minor in Mathematics \& Computer Science

$1^{\text {st }}$ Fall Semester				$1^{\text {st }}$ Spring Semester			
MATH	117	Trigonometry	3.0	MATH	136	Calculus and Analytical Geometry I	4.0
ENG	100	Freshman English	3.0	PHYS	$\begin{gathered} 100,103 \\ \text { or } 130 \end{gathered}$	Energy; Light, Color, and Vision; or Acoustics of Music and Speech	3.0
PHYS	180	Introductory Modern Physics	3.0		101	Gen. Ed. A-II Foreign Language Prep.	3.0
PHYS	181	Introductory Modern Physics Laboratory	1.0	ENG	200	Literature	3.0
COMM		General Education B-II Elective	3.0	HIST	119 or 120	Western Civilization	3.0
	145 or 161	Public Speaking	3.0			Total Hours	16.0
		Total Hours	16.0				
$2^{\text {nd }}$ Fall Semester				$2^{\text {nd }}$ Spring Semester			
MATH	137	Calculus and Analytical Geometry II	4.0	MATH	237	Multivariable Calculus	4.0
PHYS	255	University Physics I	4.0	PHYS	265	University Physics II	4.0
PHYS	256	University Physics I Laboratory	1.0	PHYS	266	University Physics II Laboratory	1.0
CHEM	120	College Chemistry I	4.0			General Education E Elective	3.0
CHEM	121	College Chemistry I Laboratory	1.0	CS	170 or 180	Introduction to Programming, or Computer Science I	3.0
	102	Foreign Language (Gen. Ed. A-II)	3.0				

Total Hours 17.0
Total Hours 15.0

$3^{\text {rd }}$ Fall Semester				$3^{\text {rd }}$ Spring Semester			
MATH	331	Differential Equations	3.0	PHYS	321	Modern Physics II	3.0
MATH	307	Introduction to Linear Algebra	3.0	PHYS	301	Electrical Measurements Laboratory	1.0
PHYS	350	Classical Mechanics I	3.0	PHYS	316 or 318	Physics Computing	3.0
PHYS	441	Optics	3.0			General Education C Elective	3.0
PHYS	404	Optics Laboratory	1.0	PHYS	398	Junior Seminar	0.5
		General Education F	2.0	MATH	435	Partial Differential Equations	3.0
		Total Hours		ENG	300	Junior English	3.0
			15.0			Total Hours	16.5
		$4^{\text {th }}$ Fall Semester				$4^{\text {th }}$ Spring Semester	
PHYS	330	Thermodynamics	3.0	PHYS	450	Classical Mechanics II	3.0
PHYS	302	Atomic Physics Laboratory	1.0	PHYS	440	Electricity and Magnetism I	3.0
PHYS	460	Solid State Physics	3.0	PHYS	470	Nuclear Physics	3.0
PHYS	406	Solid State Laboratory	1.0	PHYS	407	Nuclear Physics Laboratory	1.0
PHYS	480	Quantum Mechanics	3.0			General Education C Elective	3.0
PHYS	498	Senior Seminar	0.5			General Education (B II)	3.0
MATH	382	Probability and Statistics I	3.0				
		Total Hours	14.5			Total Hours	16.0

5.2.3 Applied Physics Option

The Applied Physics option is designed to prepare students for positions in high-tech industry and national laboratories, or to prepare for graduate programs specifically in applied physics or engineering. The program differs from the general Physics Graduate Preparation option in providing a more extensive instruction to modern methods and applications of physics in industry.

As part of the curriculum, students are involved in two summer internships in industry or at national laboratories covering a total of six months (typically split into two 3 -month sessions). Placement is organized through the Department of Physics and Astronomy in cooperation with the student and student's faculty mentor.

Table 8: Applied Physics Required and Recommended Courses

Area	Description			Hours
Gen. Ed	Minimum additional General Education requirements			35.0
Physics Core	Required Physics core courses			26.0
Recommended Physics Elective Courses	PHYS 330	Thermodynamics	3.0	
	PHYS 450	Classical Mechanics II	3.0	
	PHYS 480	Quantum Mechanics	3.0	
	Total Recommended Physics Elective Courses			9.0
Physics Support	Required Physics Support Courses			26.0
Internships	Summer Internship I \& II			2.0
Additional Physics Specialty Courses	PHYS 301	Electrical Measurements Lab	1.0	
	PHYS 316 or 318	Physics Computing	3.0	
	PHYS 340/303	Circuit Theory + Electronics Lab	4.0	
	PHYS 441/404	Optics + Laboratory	4.0	
	PHYS 460/406 or PHYS 470/407	```Solid State Physics + Lab or Nuclear Physics + Lab```	4.0	
	$\text { PHYS } 337$ or $\text { PHYS } 431$	Medical Imaging + Lab or Radiation Biophysics	4.0	
	Recommended Additional Specialty Courses			20.0
Second Major	Mathematics - Reference Code 728			19.0
Total Curriculum Hours				137.0

Table 9: Applied Physics Preparation - Suggested Program of Study

5.2.4 Astrophysics Option

This option is designed to prepare students for graduate study in astronomy or astrophysics. Physics Electives include General Astronomy (ASTR 214), Observational Astronomy (ASTR 314), and Astrophysics (ASTR 414).

Table 10: Astrophysics Required and Recommended Courses

Area	Description			Hours
Gen. Ed	Minimum additional General Education requirements			35.0
Physics Core	Required Physics core courses			26.0
Recommended Physics Elective Courses	PHYS 330	Thermodynamics	3.0	
	PHYS 450	Classical Mechanics II	3.0	
	PHYS 480	Quantum Mechanics	3.0	
	Total Recommended Physics Elective Courses			9.0
Physics Support	Required Physics Support Courses			26.0
Additional Physics Specialty Courses	ASTR214	General Astronomy	4.0	
	ASTR314	Observational Astronomy	4.0	
	ASTR414	Astrophysics	4.0	
	PHYS 441/404	Optics + Laboratory	4.0	
	Recommended Additional Specialty Courses			16.0
Second Major	Mathematics - Reference Code 728			19.0
Total Curriculum Hours				131.0

5.2.5 Physics Teaching Option

The Physics Teaching option prepares for certification in high school physics education. Students will take part in the SKyTeach program; an initiative designed for math and science teachers. Majors in both Physics and Science/Math Education are required. Recommended electives for the physics major include Physics for Teachers (PHYS 410) and Optics (PHYS 441/404)

Table 11: Physics Teaching Required and Recommended Courses

Area	Description			Hours
Gen. Ed	Minimum additional General Education requirements			35.0
Physics Core	Required Physics core courses			26.0
Recommended Physics Elective Courses	PHYS 330	Thermodynamics	3.0	
	PHYS 410	Physics for Teachers	3.0	
	PHYS 441/404	Optics + Laboratory	3.0	
	Total Recommended Physics Elective Courses			9.0
Physics Support	Required Physics Support Courses			26.0
Second Major	SMED - Reference Code 774			34.0
Total Curriculum Hours				130.0

Table 12: Astrophysics - Suggested Program of Study

Table 13: Physics Teaching - Suggested Program of Study

$1^{\text {st }}$ Fall Semester				$1^{\text {st }}$ Spring Semester			
MATH	136	Calculus and Analytical Geometry I	4.0	MATH	137	Calculus and Analytical Geometry II	4.0
ENG	100	Freshman English	3.0	PHYS	255	University Physics I	4.0
PHYS	180	Introductory Modern Physics	3.0	PHYS	256	University Physics I Laboratory	1.0
PHYS	181	Introductory Modern Physics Laboratory	1.0	CS	230	Introduction to Programming	3.0
SMED	101	Intro to Inquiry-based Teaching	1.0	SMED	102	Intro to Inquiry-based Lesson Design	2.0
COMM	145 or 161	Public Speaking	3.0	HIST	119 or 120	Western Civilization	3.0
	101	Gen. Ed. A-II Foreign Language Prep.	3.0				
		Total Hours	18.0			Total Hours	17.0
		$2^{\text {nd }}$ Fall Semester				$2^{\text {nd }}$ Spring Semester	
MATH	237	Multivariable Calculus	3.0	PHYS	321	Modern Physics II	3.0
PHYS	265	University Physics II	4.0	PHYS	301	Electrical Measurements Laboratory	1.0
PHYS	266	University Physics II Laboratory	1.0	MATH	307	Introduction to Linear Algebra	3.0
ENG	200	Literature	4.0			Foreign Language (Gen. Ed. A II)	3.0
		General Education C Elective	3.0	CHEM	120	College Chemistry I	4.0
SMED	210	Knowing \& Learning Math/Sci	3.0	CHEM	121	College Chemistry I Laboratory	1.0
				SMED	320	Classroom Interactions	3.0
		Total Hours	18.0			Total Hours	18.0
		$3{ }^{\text {rd }}$ Fall Semester				$3^{\text {rd }}$ Spring Semester	
PHYS	350	Classical Mechanics I	3.0	PHYS	440	Electricity and Magnetism I	3.0
PHYS	302	Atomic Physics Laboratory	1.0	PHYS	330	Thermodynamics	3.0
MATH	331	Differential Equations	3.0	ENG	300	Junior English	3.0
		General Education B-II Elective	3.0	PHYS	398	Junior Seminar	0.5
		General Education F	1.0			General Education F	1.0
		General Education C Elective	3.0			General Education E Elective	3.0
SMED	360	Research Methods	3.0	SMED	340	Perspectives on Math and Science	3.0
		Total Hours	17.0			Total Hours	16.5
		$4^{\text {th }}$ Fall Semester				$4^{\text {th }}$ Spring Semester	
PHYS	410	Physics for Teachers	3.0	SMED	489	Student Teaching Seminar	3.0
PHYS	441	Optics	3.0	SEC	490	Student Teaching	10
PHYS	404	Optics Laboratory	1.0				
SMED	470	Project Based Instruction	3.0				
PHYS	498	Senior Seminar	0.5				
EXED	330	Intro to Exceptional Ed: Diversity	3.0				
		General Education B-II Elective	3.0				
		Total Hours	16.5			Total Hours	17.0

5.3 Middle School Science Major (Reference Code 734)

The middle school science education major (MSSE, reference number 734) is for students who plan to teach science in grades 5 through 9 . The MSSE major also requires completion of the science and mathematics education (SMED) program (counts as the second major requirement for the Physics Degree). Upon successful completion of both majors, the student will earn a Bachelor of Science degree and will qualify for an institutional recommendation for a Kentucky Provisional Certificate for teaching in the middle grades (5-9) science field.

To earn the MSSE degree, students must earn a grade of " C " or better in each of the required core courses, each of the restricted electives, and in a mathematics course chosen from MATH 117, 118, or 136. Students must have an overall grade point average of at least 2.5 for all completed science courses. Students who complete this major will receive a 6 hour waiver of the university requirement that at least half the minimum hours in the major be at the 300 - or 400 - level. Students seeking academic advising with regard to preparation as a mathematics or science teacher should contact the SKyTeach office, Hardin Planetarium, (270) 745-3900, or refer to the SKyteach website - http://skyteach.wku.edu for additional information.

Table 14: Middle School Science Education Requirements

Area	Course	Description	Hours
	ASTR 104 or ASTR 106	Astronomy of the Solar System or Astronomy of Stellar Systems	3.0
	GEOL 111/113	The Earth and Laboratory	4.0
	GEOL 112/114	Earth History and Laboratory	4.0
	BIOL 120/121	Cells, Metabolism, and Genetics \& Lab.	4.0
	BIOL 122/123	Evolution, Diversity, and Ecology \& Lab.	4.0
	$\begin{aligned} & \text { CHEM } 105 / 106 \\ & \text { or } \\ & \text { CHEM } 120 / 121 \end{aligned}$	Fundamentals of Gen. Chemistry and Lab. or College Chemistry and Laboratory	4.0 min
	PHYS 105	Concepts of the Physical World	3.0
	$\begin{gathered} \text { PHYS } 201 \\ \text { or } \\ \text { PHYS 231/232 } \end{gathered}$	College Physics or Intro to Biophysics \& Lab.	4.0
	SMED 360	Research Methods (Science \& Math)	3.0
		Minimum Required Physics Core Courses	33.0
MSSE Electives	Minimum of 15 semester credit hours required, representing at least three of the five science disciplines. Asterisk indicates that another restricted elective is a prerequisite: ASTR 405; GEOL 308, 310, $311,325,380,405$; GEOG 427*, 471; BIOL 325, 326, 327, 334, 319/322, 348, 350*, 407, 411/412*, 430*; PHYS 410.		15.0
Second Major		SMED - Reference Code 774	31.0
Gen Ed.		Minimum General Education Requirements	38.0
		Minimum Required for MSSE Certificate	117.0

5.4 Pre-Engineering Major (Reference Code 815)

A two-year pre-engineering program is offered for students who wish to pursue an engineering degree in a specific branch of engineering at an accredited engineering school. By careful selection of the nontechnical electives in consultation with their advisor, an additional two years will usually be sufficient for the students to complete the degree requirements at the engineering school of their choice. A formal agreement for a 2-2 program exists between Western and the University of Missouri at Rolla. Several dual-degree (3-2) programs which award a Bachelor of Science degree in physics from Western Kentucky University and a degree in engineering from participating engineering schools are also available. See section 0 Physics/Engineering Dual-Degree for details.

5.5 Dual-Degree Option (Physics/Applied Sciences/Engineering)

This is a $3 / 2$ option, that requires three years of study at Western Kentucky University and two years at an engineering school, leading to two degrees, one in physics and astronomy at Western Kentucky University and one in engineering at the selected school. Western Kentucky University has cooperative agreements with a number of engineering schools. Under these agreements a student can pursue his/her studies at Western Kentucky University for three years, taking courses in general education, mathematics, chemistry, and physics as required for a major in physics. The student then transfers to one of the engineering schools for an additional two years of study in an engineering area of his/her choice. By transfer of credit from the engineering school to Western Kentucky University and upon completion of the graduation requirements at Western Kentucky University, the student receives a Bachelor of Science degree in physics from Western Kentucky University. At the end of the fifth year and upon completion of the graduation requirements at the school of engineering, the student receives a Bachelor of Science degree in engineering from the cooperating school.

5.6 Electrical Engineering/Physics Double Major (proposed)

The program allows for a double major in Electrical Engineering and Physics, and satisfies the following course equivalencies:

Physics EE

PHYS 301 EE 220
PHYS 330 ME 365
PHYS 340 EE 210
PHYS 440 EE 473
PHYS 441/404 EE 479
PHYS 498 EE 405

Table 15: EE/Physics - Suggested Program of Study

$1^{\text {st }}$ Fall Semester				$1^{\text {st }}$ Spring Semester			
MATH	136	Calculus and Analytical Geometry I	4.0	MATH	137	Calculus and Analytical Geometry II	4.0
ENG	100	Freshman English	3.0	PHYS	255	University Physics I	4.0
PHYS	180	Introductory Modern Physics	3.0	PHYS	256	University Physics I Laboratory	1.0
PHYS	181	Introductory Modern Physics Laboratory	1.0	EE	180	Digital Circuits	4.0
EE	175	University Experience-EE	2.0			General Education F	1.0
COMM	145 or 161	Public Speaking	3.0	HIST	119 or 120	Western Civilization	3.0
	101	Gen. Ed. A-II Foreign Language Prep.	3.0				
		Total Hours	19.0			Total Hours	17.0
		$2^{\text {nd }}$ Fall Semester				$2^{\text {nd }}$ Spring Semester	
MATH	331	Differential Equations	3.0	PHYS	321	Modern Physics II	3.0
PHYS	265	University Physics II	4.0	MATH	237	Multivariate Calculus	3.0
PHYS	266	University Physics II Laboratory	1.0	EE	211	Circuits and Networks II	3.5
EE	210	Circuits and Networks I	3.5	EE	220	Introduction to Electronics	4.0
CS	239	Problem Solving w/ Comp. Techniques	3.0	EE	200	EE Design II	1.0
		Foreign Language (Gen. Ed. A II)	3.0	ECON	202	Principles of Economics (Micro)	3.0
				ENG	200	Literature	3.0
		Total Hours	17.5			Total Hours	20.5
		$3^{\text {rd }}$ Fall Semester				$3^{\text {rd }}$ Spring Semester	
PHYS	350	Classical Mechanics I	3.0	PHYS	302	Atomic Physics Lab	1.0
PHYS	330	Thermodynamics	3.0	STAT	301	Intro. to Probability and Applied Statistics	3.0
MATH	350	Advanced Engineering Mathematics	3.0	ENG	300	Junior English	3.0
EE	380	Microprocessors	4.0	EE	300	EE Design III	1.0
		General Education B-II Elective	3.0			General Education C Elective	3.0
		General Education F	1.0			General Education E Elective	3.0
EE	473	Intro. to Electromagnetic Fields \& Waves	3.0	EE	420	Signals and Linear Systems	3.0
				EE	479	Fundamentals of Optoelectronics	2.0
		Total Hours	20.0			Total Hours	19.0
		$4^{\text {th }}$ Fall Semester				$4^{\text {th }}$ Spring Semester	
EE	400	EE Design IV	1.0	EE	401	EE Design Project	3.0
EE	460	Continuous Control Systems	4.0	EE		Senior Elective II	3.0
EE	431	Introduction to Power Systems	3.0	EE	450	Digital Signal Processing	3.0
EE		Senior Elective I	4.0	EE	451	Digital Signal Processing Laboratory	1.0
EE	405	EE Senior Research Seminar	1.0	EE	470	Communications and Modulation	3.0
EM	221	UK Statistics	3.0	EE	475	Communication Systems Lab	1.0
		Physics Elective	3.0	PHYS	398	Junior Seminar	1.0
						General Education B-II Elective	3.0
		Total Hours	19.0			Total Hours	18.0

6 Minor Programs of Study in the Department of Physics and Astronomy

The Department of Physics and Astronomy offers several minor programs of study complementary with majors in science and mathematics. As with the major programs, each student should be aware of the University academic requirements and regulations contained in the University Catalog in the chapter, "Academic Information." Specific attention should be given to the sub-sections in the chapter entitled (a) Academic Programs, (b) General Requirements, and (c) Academic Requirements and Regulations.

6.1 Minor in Physics (Reference Code 435)

The minor in physics (reference number 435) requires a minimum of 23 semester hours consisting of PHYS 250/251, 260/261, 270/271, 320 and a minimum of 6 semester hours selected from the lecture courses under the bulletin heading DEPARTMENTAL MAJORS AND MINORS.

Table 16: Physics Minor Requirements

Area	Course	Description	Hours
Physics Minor Core Courses	PHYS 180/181	Introductory Modern Physics and Laboratory	4.0
	PHYS 255/256	University Physics I and Laboratory	5.0
	PHYS 265/266	University Physics II and Laboratory	5.0
	PHYS 321	Modern Physics II	3.0
		Total Required Physics Core Courses	17.0
Minor Electives and Support Courses	PHYS \qquad PHYS \qquad	Upper division physics electives chosen from the courses listed for departmental majors and minors.	6.0
		Total Required Physics Elective Courses	6.0
	MATH 136	Calculus and Analytical Geometry I	4.0
	MATH 137	Calculus and Analytical Geometry II	4.0
		Total Required Physics Support Courses	26.0
		Minimum Required for Physics Minor	31.0

6.2 Minor in Biophysics (Reference Code 329)

The minor in biophysics (reference number 329) requires a minimum of 18 semester hours. This course sequence is intended to serve students in the life sciences, that is, students of biology, premedicine and pre-dental, agriculture, environmental health, psychology, science teaching, environmental engineering, pre-veterinary, pre-pharmacy and pre-optometry.

Table 17: Biophysics Minor Requirements

Area	Course	Description	Hours
Biophysics Minor Core Courses	PHYS 231/232	Intro to Physics and Biophysics I \& Lab	4.0
	PHYS 332/233	Intro to Physics and Biophysics II \& Lab	4.0
	PHYS 335 or PHYS 337 or PHYS 431	General Biophysics, or Medical Imaging, or Radiation Biophysics	4.0
	Total Required Physics Core Courses		12.0
Biophysics Electives	PHYS \qquad PHYS \qquad	Upper division physics electives chosen from the courses listed for departmental majors and minors. Biology courses can be substituted with approval.	6.0
Minimum Required for Biophysics Minor			18.0

6.3 Minor in Astronomy (Reference Code 318)

The minor in astronomy (reference number 318) requires a minimum of 20 semester hours and is designed to provide a background in astronomy and planetary science for students from a wide range of backgrounds. It provides a program of study for students majoring in science and math; to prepare them for employment in astronomy related fields in industry. Upon completion of the minor a student will have an understanding of the physical processes of galaxies, stars, and planetary systems; a familiarity with the tools and techniques of modern astronomical investigations; and an appreciation for the interdisciplinary nature of scientific research. The Astronomy minor has been designed with requirements flexible enough to allow students to specialize in any of the current areas of observational, theoretical, or computational astronomical research: including galactic, stellar, solar, and planetary astronomy. Students who intend to undertake graduate work in astronomy should complete a major in physics with a minor in mathematics. A minor in astronomy consists of 16 credit hours of required core courses and at least 4 credit hours from the list of restricted electives, as outlined in the table below.

Table 18: Requirements for Minor in Astronomy

Requirement	Hours
Complete an introductory sequence of classical physics - PHYS 255/256 and PHYS 265/266 or - PHYS 201 and PHYS 202/208 or - PHYS 231/232 and PHYS 332/233 - (Physics majors must substitute GEOL 111/113 for PHYS 255/256)	8.0 min
ASTR 214 - General Astronomy	4.0
ASTR 314 - Observational Astronomy	4.0
At least 4.0 hours from the following list of upper division courses chosen in consultation with the student's advisor. - ASTR 414 - Astrophysics (4 hrs), - PHYS 316 - Computational Physics (3 hrs), - PHYS 441/404 - Optic (4 hrs), - PHYS 445 - Electromagnetism II (3 hrs), - PHYS 450 - Classical Mechanics II (3 hrs), - PHYS 465 or GEOL $465-$ Geophysics (3 hrs), - GEOL 325 - Intro to Rocks and Minerals (3 hrs), - GEOL 330 - Mineralogy (4 hrs), - GEOL 350 - Petrology (4 hrs), - GEOL 370 - Principles of Stratigraphy (4 hrs), - GEOL 420 - Geomorphology (4 hrs)	4.0
Minimum Required for Astronomy Minor	20

[^0]: ${ }^{1}$ For Physics majors, PHYS 255/256, CHEM 120/121, and MATH 136 satisfy all Category D general education requirements, reducing the non-major additional requirements to 35 credit hours.

[^1]: ${ }^{2}$ The total curriculum hours for each student depend on the individual's preparation when entering the program of study.

